Introduction to Robotics

Assignment \#1

Due: 20.04.2021, 23:59

Task 1.1 (8 points) Pyramid: A pyramid (square base $A B=B C=C D=D A=42 \mathrm{~mm}$; plumbline $M E=12 \mathrm{~mm}$, with vertex E located at the top and point M located at the center of the base) is held by a robot so that its square base $A B C D$ is located in the $x y$-plane of a cartesian world coordinate frame $M_{x y z}$, with point M at its origin, the edges $A B$ and $C D$ parallel to the x-axis and the edged $B C$ and $A D$ parallel to the y-axis. Attached to the pyramid is an object coordinate frame $M_{u v w}$, which initially coincides with $M_{x y z}$. Write down the general transformation matrix for each rotation.
1.1.1 (4 points): Determine the locations of the vertices A through E, after the following sequence of rotations has been performed by the robot:

1. Rotation by $\psi=50^{\circ}$ around M_{w}
2. Rotation by $\varphi=-35^{\circ}$ around M_{u}
3. Rotation by $\theta=340^{\circ}$ around M_{v}
1.1.2 (4 points): Same sequence of rotations, but using the rotation axes M_{z}, M_{x} and M_{y} instead.

Task 1.2 (6 points) Homogeneous transformations: Given are three frames A, B and C as well as the following two homogeneous transformations:

$$
{ }^{A} T_{B}=\left[\begin{array}{cccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 1 \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
{ }^{B} T_{C}=\left[\begin{array}{cccc}
\sqrt{3} / 2 & -1 / 2 & 0 & 2 \\
1 / 2 & \sqrt{3} / 2 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

1.2.1 (3 points): Can the interpretation of the transformation ${ }^{A} T_{C}$ be considered to be unambiguous? Explain your answer.
1.2.2 (3 points): Visualize the three coordinate systems with a tool of your choice.

Task 1.3 (6 points) Euler angles:

1.3.1 (4 points): Give four examples of Euler angle combinations (φ, θ, ψ) and interpret their geometric meaning using natural language.
"This is a rotation around x by φ " is not sufficient. Explain the properties of the transformation with respect to some real objects. For example, a plane, a toy or a humanoid robot and so on.
1.3.2 (2 points): There are 12 possible sequences of rotations with Euler-angles around the axes (see slide 29). Explain why there are exactly 12 !

