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Dynamics of multibody systems
Dynamics - Forward and inverse Dynamics Introduction to Robotics

I A multibody system is a mechanical system of single bodies
I connected by joints,
I influenced by forces

I The term dynamics describes the behavior of bodies influenced by forces
I Typical forces: gravity, friction, centrifugal, magnetic, spring, . . .

I kinematics just models the motion of bodies (without considering forces),
therefore it can be seen as a subset of dynamics
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Forward and inverse Dynamics
Dynamics - Forward and inverse Dynamics Introduction to Robotics

We consider a force F and its effect on a body:

F = m · a = m · v̇

In order to solve this equation, two of the variables need to be known.
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Forward Dynamics
Dynamics - Forward and inverse Dynamics Introduction to Robotics

If the force F and the mass of the body m is known:

a = v̇ = F
m

Hence the following can be determined:
I velocity (by integration)
I coordinates of single bodies
I mechanical stress of bodies
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Forward Dynamics (cont.)
Dynamics - Forward and inverse Dynamics Introduction to Robotics

Input
τi = torque at joint i that effects a trajectory Θ.
i = 1, . . . , n, where n is the number of joints.

Output
Θi = joint angle of i
Θ̇i = angular velocity of joint i
Θ̈i = angular acceleration of joint i
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Inverse Dynamics
Dynamics - Forward and inverse Dynamics Introduction to Robotics

If the time curves of the joint angles are known, it can be differentiated twice.

This way,
I internal forces
I and torques
can be obtained for each body and joint.

Problems of highly dynamic motions:
I models are not as complex as the real bodies
I differentiating twice (on sensor data) leads to high inaccuracy
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Inverse Dynamics (cont.)
Dynamics - Forward and inverse Dynamics Introduction to Robotics

Input
Θi = joint angle i
Θ̇i = angular velocity of joint i
Θ̈i = angular acceleration of joint i
i = 1, . . . , n, where n is the number of joints.

Output
τi = required torque at joint i to produce trajectory Θ.
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General dynamic equations of a manipulator
Dynamics - General dynamic equations Introduction to Robotics

τ = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ)

M(Θ): the position dependent n × n-mass matrix of a manipulator

V (Θ, Θ̇): an n × 1-vector of centrifugal and Coriolis coefficients

G(Θ): an n × 1-vector of gravity terms

S. Li, J. Zhang 471 / 626



Inclusion of Nonrigid Body Effects
Dynamics - General dynamic equations Introduction to Robotics

τ = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ)+F (Θ, Θ̇)

I F (Θ, Θ̇) is the friction term
I Viscous friction and Coulomb friction
I friction also displays a dependence on the joint position.

How about soft robots? (stretching and bending)
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Dynamics of Manipulators
Dynamics - General dynamic equations Introduction to Robotics

I Forward dynamics:
I Input: joint forces / torques;
I Output: kinematics;
I Application: Simulation of a robot model.

I Inverse Dynamics:
I Input: desired trajectory of a manipulator;
I Output: required joint forces / torques;
I Application: model-based control of a robot.

τ(t)→ direct dynamics → q(t), (q̇(t), q̈(t))
q(t)→ inverse dynamics→ τ(t)

Unlike kinematics, the inverse dynamics is easier to solve than forward dynamics
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Dynamics of Manipulators (cont.)
Dynamics - General dynamic equations Introduction to Robotics

Two methods for calculation:
I Analytical methods

I based on Lagrangian equations
I Synthetic methods:

I based on the Newton-Euler equations

Computation time
Complexity of solving the Lagrange-Euler-model is O(n4) where n is the number of
joints.
n = 6: 66,271 multiplications and 51,548 additions.
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Lagrangian equations
Dynamics - General dynamic equations Introduction to Robotics

The description of manipulator dynamics is directly based on the relations between the
kinetic energy K and potential energy P of the manipulator joints.

Here:
I constraining forces are not considered
I deep knowledge of mechanics is necessary
I high effort of defining equations
I can be solved by software
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Lagrangian Equations
Dynamics - General dynamic equations Introduction to Robotics

The Lagrangian function L is defined as the difference between kinetic energy K and
potential energy P of the system.

L(qi , q̇i ) = K (qi , q̇i )− P(qi )

I K : kinetic energy due to linear velocity of the link’s center of mass and angular
velocity of the link

I P: potential energy stored in the manipulator that is the sum of the potential
energy in the individual links
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Lagrangian Equations (cont.)
Dynamics - General dynamic equations Introduction to Robotics

The Lagrangian function L is defined as:

L(qi , q̇i ) = K (qi , q̇i )− P(qi )

Theorem
The motion equations of a mechanical system with coordinates q ∈ Θn and the Lagrangian
function L is defined by:

d
dt

∂L
∂q̇i
− ∂L
∂qi

= Fi , i = 1, . . . , n

d
dt (∂K

∂q̇i
)− ∂K

∂qi
+ ∂P
∂qi

= Fi , i = 1, . . . , n

where
qi : the coordinates, where the kinetic and potential energy is defined;
q̇i : the velocity;
Fi : the force or torque, depending on the type of joint (rotational or linear)
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Recursive Newton-Euler Method
Dynamics - General dynamic equations Introduction to Robotics

I Determine the kinematics from the fixed base to the TCP (relative kinematics)
I The resulting acceleration leads to forces towards rigid bodies
I The combination of constraining forces, payload forces, weight forces and working

forces can be defined for every rigid body. All torques and momentums need to be
in balance

I Solving this formula leads to the joint forces
I Especially suitable for serial kinematics of manipulator
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Recursive Newton-Euler Method (cont.)
Dynamics - General dynamic equations Introduction to Robotics

1. Newton’s equation
F = mv̇c

where F is the force acting at the center of mass of a body, m is the total mass of the
body, v̇c is the acceleration.

͘𝒗c

F

͘
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Recursive Newton-Euler Method (cont.)
Dynamics - General dynamic equations Introduction to Robotics

2. Euler’s equation

τ = C Iω̇ + ω × C Iω

ω

N

ω͘

I where C I is the inertia tensor of the body written in a frame C, whose origin is located at
the center of the mass.

C I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz


I τ is the torque
I ω, ω̇ are the angular velocity and angular acceleration respectively
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Recursive Newton-Euler Method (cont.)
Dynamics - General dynamic equations Introduction to Robotics

C I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz


where the scalar elements are given by
mass moments of inertia:

Ixx =
∫ ∫ ∫

V
(y2 + z2)ρdv

Iyy =
∫ ∫ ∫

V
(x2 + z2)ρdv

Izz =
∫ ∫ ∫

V
(x2 + y2)ρdv

mass products of inertia:

Ixy =
∫ ∫ ∫

V
xyρdv Ixz =

∫ ∫ ∫
V
xzρdvIyz =

∫ ∫ ∫
V
yzρdv

ρ is the material of density, dv is differential volume element
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Formulation of robot dynamics
Dynamics - General dynamic equations Introduction to Robotics

I Combining the different influence factors in the robot specific motion equation
from kinematics (Θ, Θ̇, Θ̈)

I Practically the Newton-, Euler- and motion-equation for each joint are combined
I Advantages: numerically efficient, applicable for complex geometry, can be

modularized
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Interim Conclusions
Dynamics - General dynamic equations Introduction to Robotics

I We can determine the forces with the Newton-equation
I The Euler-equation provides the torque
I The combination provides force and torque for each joint.
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Example: A 2 DOF manipulator
Dynamics - Newton-Euler-Equation Introduction to Robotics

Dynamics of a multibody system, example: a two joint manipulator.

l1

l2

R

θ1

θ2

m1

m2
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Newton-Euler-Equations for 2 DOF manipulator
Dynamics - Newton-Euler-Equation Introduction to Robotics

Using Newton’s second law, the forces at the center of mass at link 1 and 2 are:

F1 = m1r̈1

F2 = m2r̈2

where
r1 = 1

2 l1(cos θ1~i + sin θ1~j)

r2 = 2r1 + 1
2 l2[cos(θ1 + θ2)~i + sin(θ1 + θ2)~j]
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Newton-Euler-Equations for 2 DOF manipulator (cont.)
Dynamics - Newton-Euler-Equation Introduction to Robotics

Euler equations:
τ1 = I1ω̇1 + ω1 × I1ω1

τ2 = I2ω̇2 + ω2 × I2ω2

where

I1 = m1l12

12 + m1R2

4

I2 = m2l22

12 + m2R2

4
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Newton-Euler-Equations for 2 DOF manipulator (cont.)
Dynamics - Newton-Euler-Equation Introduction to Robotics

The angular velocities and angular accelerations are:

ω1 = θ̇1

ω2 = θ̇1 + θ̇2

ω̇1 = θ̈1

ω̇2 = θ̈1 + θ̈2

As ωi × Iiωi = 0, the torques at the center of mass of links 1 and 2 are:

τ1 = I1θ̈1

τ2 = I2(θ̈1 + θ̈2)

F1,F2, τ1, τ2 are used for force and torque balance and are solved for joint 1 and 2.
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Example: A two joint manipulator
Dynamics - Langrangian Equations Introduction to Robotics

Y

X

d1

d2
θ1

θ2

m1
m2

S. Li, J. Zhang 488 / 626



Langragian Method for two joint manipulator
Dynamics - Langrangian Equations Introduction to Robotics

The kinetic energy of mass m1 is:

K1 = 1
2m1 d1

2 θ̇1
2

The potential energy is:

P1 = −m1 g d1 cos(θ1)

The cartesian positions are:

x2 = d1sin(θ1) + d2sin(θ1 + θ2)
y2 = −d1cos(θ1)− d2cos(θ1 + θ2)
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Langragian Method for two joint manipulator (cont.)
Dynamics - Langrangian Equations Introduction to Robotics

The cartesian components of velocity are:

ẋ2 = d1cos(θ1)θ̇1 + d2cos(θ1 + θ2)(θ̇1 + θ̇2)

ẏ2 = d1sin(θ1)θ̇1 + d2sin(θ1 + θ2)(θ̇1 + θ̇2)

The square of velocity is:
v2

2 = ẋ2
2 + ẏ2

2

The kinetic energy of link 2 is:
K2 = 1

2m2v2
2

The potential energy of link 2 is:

P2 = −m2gd1cos(θ1)−m2gd2cos(θ1 + θ2)
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Langragian Method for two joint manipulator (cont.)
Dynamics - Langrangian Equations Introduction to Robotics

The Lagrangian function is:

L = (K1 + K2)− (P1 + P2)

The force/torque to joint 1 and 2 are:

τ1 = d
dt

∂L
∂θ̇1
− ∂L
∂θ1

τ2 = d
dt

∂L
∂θ̇2
− ∂L
∂θ2
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Langragian Method for two joint manipulator (cont.)
Dynamics - Langrangian Equations Introduction to Robotics

τ1 and τ2 are expressed as follows:

τ1 =D11θ̈1 + D12θ̈2 + D111θ̇
2
1 + D122θ̇

2
2

+ D112θ̇1θ̇2 + D121θ̇2θ̇1 + D1

τ2 =D21θ̈1 + D22θ̈2 + D211θ̇
2
1 + D222θ̇

2
2

+ D212θ̇1θ̇2 + D221θ̇2θ̇1 + D2

where
Dii : the inertia to joint i ;
Dij : the coupling of inertia between joint i and j ;
Dijj : the coefficients of the centripetal force to joint i because of the velocity of joint
j ;

Diik(Diki ): the coefficients of the Coriolis force to joint i effected by the velocities of joint i
and k;
Di : the gravity of joint i .
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General dynamic equations of a manipulator
Dynamics - Langrangian Equations Introduction to Robotics

τ = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ)

M(Θ): the position dependent n × n-mass matrix of a manipulator
For the example given above:

M(Θ) =
[
D11 D12
D21 D22

]

V (Θ, Θ̇): an n × 1-vector of centripetal and coriolis coefficients
For the example given above:

V (Θ, Θ̇) =
[
D111θ̇

2
1 + D122θ̇

2
2 + D112θ̇1θ̇2 + D121θ̇2θ̇1

D211θ̇
2
1 + D222θ̇

2
2 + D212θ̇1θ̇2 + D221θ̇2θ̇1

]
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General dynamic equations of a manipulator (cont.)
Dynamics - Langrangian Equations Introduction to Robotics

I a term such as D111θ̇
2
1 is caused by coriolis force;

I a term such as D112θ̇1θ̇2 is caused by coriolis force and depends on the (math.)
product of the two velocities.

I G(Θ): a term of velocity, depends on Θ.
I for the example given above

G(Θ) =
[
D1
D2

]
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Applications of robot dynamics
Dynamics - Langrangian Equations Introduction to Robotics

KUKA LWR’s model-based control
I shortening the motion time without generating overshoots
I giving large reduction of the tracking error
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Applications of robot dynamics (cont.)
Dynamics - Langrangian Equations Introduction to Robotics

KUKA iiwa’s hand teaching
I Free movement by hand with dynamics compensation on each joint
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https://www.youtube.com/watch?v=PEft1BTHBQU


Applications of robot dynamics (cont.)
Dynamics - Langrangian Equations Introduction to Robotics

UR5 hand teaching VS KUKA iiwa’s hand teaching
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Dynamics libraries
Dynamics - Langrangian Equations Introduction to Robotics

I Rigid Body Dynamics Library (RBDL)
I drake
I frost
I pinocchio
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https://rbdl.github.io/
https://drake.mit.edu/
http://ayonga.github.io/frost-dev/
https://github.com/stack-of-tasks/pinocchio
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