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Idea
Path Planning - Probabilistic Planners Introduction to Robotics

I Planning on graphs of reasonable size is simple
I Operating on grids ignores continuous spaces in Xfree
I Instead rely on Probabilistic Sampling to represent the space

free space

milestone
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Idea
Path Planning - Probabilistic Planners Introduction to Robotics

Key questions:

I How to generate the samples?

I How can the samples be connected to
form a planning graph?

I How many samples do you need to
describe the space?

free space

milestone

Abstract C-space with sampled valid states
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Probabilistic Road Maps
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

Proposed by Lydia E. Kavraki et.al. 1996 [17]

Two Step algorithm:

1. Construction Phase - Build Roadmap
2. Query Phase - Connect start and goal to graph and solve graph search

free space

milestone

qs

qg

Abstract C-space with sampled valid states
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Probabilistic Road Maps - Algorithm
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

Adapted from [15]
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Milestones and Roadmap - Construction
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

free space
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Milestones and Roadmap - Query
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics
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Milestones and Roadmap - Query
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Probabilistic Road Maps - Aspects
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics
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Probabilistic Road Maps - Aspects
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

I SampleFree - Sample states from Xfree
I Near - Choose Distance metric and threshold
I CollisionFree(v,u) - Check motion between states for collisions
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Probabilistic Road Maps - Aspects
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

SampleFree – sample states from Xfree
I Traditionally: Rejection Sampling

Take samples uniformally, add sample if x ∈ Xfree
I Alternatives:

I Projective Sampling: Replace samples x ∈ Xobs by closest state x ′ ∈ Xfree
I Generative Sampling: For a sufficient parameterized space X ′

free ⊆ Xfree :
Sample from X ′

free via parameters
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Probabilistic Road Maps - Aspects
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

Near - choose distance metric and threshold
I Traditional C-space metric: L1 distance
I Obvious alternatives: weighted L1 distance, L2 distance

I Higher threshold: more negative collision checks
I Lower threshold: slower graph building
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Probabilistic Road Maps - Aspects
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

CollisionFree(v, u) - Local Planning
I Traditionally collision-checking tests one state
I Interpolate states between 〈v , u〉 and check those

I Fixed step size in C-space can imply huge motions in workspace!
I Continuous collision checking (CCD):

I Current systems rely on primitive motions
I Robot links move in complex splines
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Example
Path Planning - Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

3dof planning problem
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Single and Multi-Query Planning
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Definition
If only a single path is requested in a potentially changing scene, this is called
single-query planning. If datastructures remain valid between motion requests, this is
called multi-query planning.

PRM solves a multi-query problem by building an undirected graph.

For single-shot planning, the graph search can be avoided altogether.

M. Görner 443 / 641



Rapidly-exploring Random Trees (RRT) - Basic Idea
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Proposed by Kuffner and LaValle 2000 [18]

Instead of building a graph, grow a tree from the start state.

If for any leaf state x ∈ Xgoal , a solution is found.

RRT at multiple stages of extension

M. Görner 444 / 641



Rapidly-exploring Random Trees (RRT) - Algorithm
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Adapted from [15]
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Rapidly-exploring Random Trees (RRT) - Algorithm
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Steer(x,y) - Compute new state x ′

I Move from x towards y : ‖y − x ′‖ < ‖y − x‖
I ‖x − x ′‖ < η to limit step size
I Alternatively compute closest x ′ ∈ Xfree reachable via straight motion

Adapted from [15]
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Rapidly-exploring Random Trees (RRT) - Algorithm
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

SampleFree – sample states from Xfree
I Traditionally: uniform sampling
I To improve heuristically, a Goal Bias can be added

I Low fraction of samples are sampled from Xgoal
I Required if Xgoal is small in X

Adapted from [15]
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Example
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

RRT graph of an example
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Bi-Directional Search
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

In robotics, start and goal are often in constraint areas of Xfree , e.g., close to obstacles.

The transition phase between these states is often quite flexible.

Instead of growing a single tree towards the goal:
I Grow two trees from start and goal each.
I Attempt to connect them at each step.

In practice, this speeds up planning to the
first solution significantly.

Bi-directional search trees [19]
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RRT-Connect - Example
Path Planning - Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

RRT-Connect for an example
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Expansive Space Trees
Path Planning - Probabilistic Planners - Expansive Space Trees Introduction to Robotics

PRM and RRT sample random configurations from Xfree .
Thus they also sample in areas which are already well-represented by milestones.

Definition
The density around a state x can be represented by
the cardinality of its neighborhood within a distance d : |Nd(x)|.

Ideas
I Sample next expansion step weighted by inverse density w(x) = 1

|Nd (x)|
I Stochastically reject samples in high-density areas

Hsu et.al. 1997 [20]
M. Görner 449 / 641
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Expansive Space Trees - Algorithm
Path Planning - Probabilistic Planners - Expansive Space Trees Introduction to Robotics

I Expand from an existing node instead of global samples from X
I Samples rejected in 4. are never collision checked!
I Original formulation is bidirectional

Hsu et.al. 1997 [20]
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(Bi)EST - Example
Path Planning - Probabilistic Planners - Expansive Space Trees Introduction to Robotics

(Bi-directional) EST for an example
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Path Postprocessing
Path Planning - Probabilistic Planners - Auxiliary Techniques Introduction to Robotics

The resulting paths are not smooth and often contain unnecessary motions.

Traditional post-processing includes:
I Path Shortcutting

I Repeatedly pick two non-consecutive waypoints and attempt to connect them

I Perturbation of individual waypoints
I Optional
I Can reduce solution costs
I Computationally expensive
I For differentiable costs: exploit gradient

I Fit smooth splines through waypoints

All modifications need to be collision checked.
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Multiple IK Solutions
Path Planning - Probabilistic Planners - Auxiliary Techniques Introduction to Robotics

Redundant robots generate multiple joint
solutions per pose.

Each Cartesian goal region adds a number
of disjoint C-space goal regions.

Most tree-based planners naturally extend
to Multi-Goal Planning, implicitly
building multiple goal trees.

Multiple IK solutions for one target pose © Hendrich
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Optimal Planning
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics

Definition
An Optimal Path Planning Problem is defined by a path planning problem
P = 〈Xfree , xinit ,Xgoal〉 and a cost function c(τ) : R ≥ 0. It requires to find a feasible
path τ∗ such that τ∗ = argminτ{c(τ) | τ is feasible for P }

In practice:
I Two-step process:

I Find feasible path(s)
I Optimize path(s)

I Planners are asymptotically optimal
I Convergence might take long
I Non-trivial to detect ε-optimal solution

I What cost function should be used?
I C-space path length
I Accumulated clearance (distance to obstacles)
I Cartesian end-effector path length
I Physical work
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Planner∗
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics

Method
Instead of stopping at the first trajectory, continue sampling to improve solution.

Karaman and Frazzoli 2011 [15] introduced PRM∗ and RRT∗.
Both are efficient, asymptotically optimal versions of the basic algorithms.
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PRM∗
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics

PRM is asymptotically optimal as-is.
I Eventually all points on the optimal path will be added to the roadmap.

Ensure minimal required graph connectivity of O(n · log(n)).
I Reduce the neighborhood radius r with sample size n:

r(n) = γPRM · (
log(n)

n )
1
d

where γPRM depends on the planning space, d is the dimensionality of X
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RRT∗
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics

Method
Update tree whenever new samples yield cheaper paths to root.

I Instead of connecting the new states to closest node,
connect to the cheapest node in neighborhood

I Change parent of neighboring states to new state if new path is cheaper
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RRT∗ - Algorithm
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics
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RRT∗ - Example
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics

RRT∗ for an example
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Summary - Sampling Based Planning
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics

I Represent Xfree probabilistically through samples
I Relies heavily on binary collision checking

I Post-processing solutions is essential

I Various (dozens) of algorithms with varying performance
I Straight-forward extensions for asymptotically optimal planning
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Beyond Sampling-Based Planning
Path Planning - Optimal Planning - Planner∗ Introduction to Robotics

MPNet

Fast deep-learning system learning from planners [21]

TrajOpt

Sequential convex optimizer solving trajectories [22]
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