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Jocabian Review
- Introduction to Robotics

Joint velocities ⇔ End-effector velocities
⇓

Jacobian
I Jacobian

δx(m×1) = J(m×n)δq(n×1) where Jij(q) = ∂

∂qj
fi(q)

I Angular/Linear velocity Jacobian

J =
[
Jv
Jw

]
,

[
0vn
0ωn

]
=
[
Jv
Jw

]
q̇

I Computation of the final Jacobian
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Singularities
- Introduction to Robotics

I Geometric singularities:
I for any two revolute joints, the joint axes are collinear
I any three parallel rotation axes lie in a plane
I any four rotational axes intersect at a point
I any three coplanar revolute axes intersect at a point

I Mathematical singularities:

det J = 0 =⇒ J is not invertible

Where the determinant is equal to zero, the Jacobian has lost full rank and is
singular.
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Outline
Trajectory Generation 1 Introduction to Robotics

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1

Trajectory and related concepts
Trajectory generation
Solutions of trajectory generation
Optimizing motion
Application

Trajectory Generation 2
Dynamics
Robot Control
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Outline (cont.)
Trajectory Generation 1 Introduction to Robotics

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook
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Trajectory
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics

Definition
A trajectory is a time history of

position,
velocity and
acceleration

for each DOF

Describes motion of TCP frame relative to base frame
I abstract from joint configuration
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Trajectories in multidimensional space
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics

I Changes in position, velocity and acceleration of all joints are analyzed over a
period of time

I Trajectory with n DOF is a parameterized function q(t) with values in its motion
region.

I Trajectory q(t) of a robot with n DOF is then a vector of n parameterized
functions qi(t), i ∈ {1 . . . n} with one common parameter t:

q(t) = [q1(t), q2(t), . . . , qn(t)]T
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Trajectory generation
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics

Problem
The robot is at point A and wants move to point B.
I How does the robot get to point B?
I How long does it take the left arm to get to point B?
I Which possible constraints exist for moving from A to B?

A

B
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Trajectory generation
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics

Problem
The robot is at point A and wants move to point B.
I How does the robot get to point B?
I How long does it take the left arm to get to point B?
I Which possible constraints exist for moving from A to B?

Solution
I generate a possible and smooth trajectory
I describe intermediate poses (waypoints)

I usually fixed temporal intervals
I obey the physical boundaries of the mechanics of the robot
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Trajectory planning
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics

Work surface

ObstacleFine
motion

Coarse motion

Fine
motion

Pick

Lift-off

Waypoint-1 Waypoint-2

Set-down

Place
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Trajectory planning (cont.)
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics

Pick posStart = object, velStart = 0, accStart = 0
Lift-off limited velocity and acceleration
Motion continuous via waypoints, full velocity and acceleration

Set-down similar to Lift-off
Place similar to Pick
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Trajectory planning (cont.)
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics
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Task level planning
Trajectory Generation 1 - Trajectory and related concepts Introduction to Robotics
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Generation of trajectories
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

Task
I find a smooth trajectory for moving the robot from start to goal pose
I use continuous functions of time
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Continuity of Trajectories
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

I A trajectory is Ck -continuous, if all derivatives up to the k-th (including) exist and
are continuous.

I A trajectory is called smooth, if it is at least C2-continuous

I q(t) is the trajectory,
I q̇(t) is the velocity,
I q̈(t) is the acceleration,
I

...q (t) is the jerk
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Time-derivatives of position
Trajectory Generation 1 - Trajectory generation Introduction to Robotics
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Generation of trajectories
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

Task
I find trajectory for moving the robot from start to goal pose
I use continuous functions of time

Representation solution:
I calculation of Cartesian trajectories for the TCP
I calculation for trajectories in joint space
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Generation of trajectories (cont.)
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

Source 
Container

ATI Force / 
Torque Sensor

Scale

Loudspeaker

Microphone

Target 
Containers

Spout

Pouring setup Pushing setup
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Trajectories in Cartesian space
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

A

B

A

B

IK
Task space
waypoints

Task space
trajectory Joint position 

commands

Advantages:
I near to the task specification
I advantageous for collision avoidance
I can specify the spatial shape of the

path

Disadvantages:
I more expensive at run time

I after the path is calculated need
joint angles in a lot of points by IK

I Discontinuity problems
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Difficulties of trajectories in Cartesian space
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

1. Waypoints cannot be realized
I workspace boundaries, object collision, self-collision

A

B
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Difficulties of trajectories in Cartesian space (cont.)
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

2. Velocities in the vicinity of singular configurations are too high

A

B
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Difficulties of trajectories in Cartesian space (cont.)
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

3. Start and end configurations can be achieved, but there are different solutions
I ambiguous solutions

A

B
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Trajectories in joint space
Trajectory Generation 1 - Trajectory generation Introduction to Robotics

A

B

A

B

IK
Task space
waypoints

Joint space
trajectory Joint position 

commands

Joint space:
I no inverse kinematics in joint space required
I the planned trajectory can be immediately applied
I no problem with singularities
I physical joint constraints can be considered
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Primitive solution
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

Naive approach
Set the pose for the next time step (e.g. 10ms later) to B.

I possible only in simulation
I the moving distance for a manipulator at the next time step may be too large

(velocity approaches ∞)
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Linear interpolation
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

Next best approach
I divide distance between A and B to shorter (sub-)distances
I use linear interpolation for these (sub-)distances
I respect the maximum velocity constraint
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Linear interpolation – visualization
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

0 20 40 60 80

0
Acceleration

Velocity

Trajectory (position)Acceleration
too high!

Acceleration
too high!

time
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Linear interpolation – constraints
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

Problem
The physical constraints are violated
I joint velocity is limited by maximum motor rotation speed
I joint acceleration is limited by maximum motor torque
Implicitly these contraints are valid for motion in cartesian space.

I robot dynamics (joint moments resulting from the robot motion) affect the
boundary condition

Solution
I dynamical trajectory generation
I advanced optimization methods → current topic of research
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Linear interpolation – improvement
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

Next best approach
I Limitation of joint velocity and acceleration
I Two different methods

I trapezoidal interpolation
I polynomial interpolation
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Trapezoidal interpolation – visualization
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

0 20 40 60 80

0

Trajectory (position)

Velocity (limited)

Acceleration (limited)

time
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Trapezoidal interpolation – summary
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I Position is quadratic during acceleration and deceleration, and linear elsewhere
I Linear segment with Parabolic Blends

I Velocity linearly ramps up/down to maximum velocity
I Acceleration and deceleration is constant for each trajectory segment.
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Trapezoidal interpolation – summary (cont.)
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I consider joint velocity and acceleration contraints
I optimal time usage (move with maximum acceleration and velocity)
I acceleration is not differentiable (the jerk is not continuous)
I start and end velocity equals 0

I not sensible for concatenating trajectories
I improved by polynomial interpolation
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Trapezoidal interpolation – constraints
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

Problem
Multidimensional trapezoidal interpolations
I different run time for joints (or cartesian dimensions)
I multiple velocity and acceleration contraints
I results in various time switch points

I from acceleration to continuous velocity
I from continuous velocity to deceleration
I moving along a line in joint/cartesian space is impossible.

S. Li, J. Zhang 265 / 592



Trapezoidal interpolation – constraints
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

time

Solution
I Normalization to the joint that takes longest to reach its goal
I Synchronize phase switching points and overall execution time
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Trapezoidal interpolation – normalization
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

Normalize to the slowest joint

Integral (= driven distance)
has to stay constant

time
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Polynomial interpolation
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I Consider velocity and acceleration boundary conditions
I calculation of extremum and duration of trajectory

I Acceleration differentiable
I continuous jerk
I smooth trajectory
I interesting only in the theory – for momentum control

I Start and end velocity may be 6= 0
I sensible for concatenating trajectories
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Polynomial interpolation (cont.)
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I Usually a polynomial with degree of 3 (cubic spline) or 5
I Calculation of coefficient with respect to boundary constraints

I 3rd -degree polynomial: consider 4 boundary constraints
I position and velocity; start and goal

I 5th-degree polynomial: consider 6 boundary constraints
I position, velocity and acceleration; start and goal
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Polynomial interpolation (cont.)
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

0 0.2 0.4 0.6 0.8

0

velStart

posStart
accStart

posGoal

velGoal

accGoal

position
5th-degree polynomvelocity

4th-degree polynom

acceleration
3rd -degree polynom

time
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Cubic polynomials between two configurations
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I third-degree polynomial ⇒ four constraints(position and velocity; start and goal):

θ(t) = a0 + a1t + a2t2 + a3t3

˙θ(t) = a1 + 2a2t + 3a3t2

¨θ(t) = 2a2 + 6a3t

I if the start and end velocity is 0 then

θ(0) = θ0 (36)

θ(tf ) = θf (37)

θ̇(0) = 0 (38)

θ̇(tf ) = 0 (39)
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Cubic polynomials between two configurations (cont.)
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I The solution

eq. (36) a0 = θ0

eq. (38) a1 = 0

a2 = 3
t2
f

(θf − θ0)

a3 = − 2
t3
f

(θf − θ0)
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Cubic polynomials with waypoints and velocities
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I Similar to the previous example:
I positions of waypoints are given (same)
I velocities of waypoints are different from 0 (different)

θ(0) = θ0 (40)

θ(tf ) = θf (41)

θ̇(0) = θ̇0 (42)

θ̇(tf ) = θ̇f (43)
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Cubic polynomials with waypoints and velocities (cont.)
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I The solution

eq. (40) a0 = θ0

eq. (42) a1 = θ̇0

a2 = 3
t2
f

(θf − θ0)− 2
tf
θ̇0 −

1
tf
θ̇f

a3 = − 2
t3
f

(θf − θ0) + 1
t2
f

(θ̇f + θ̇0)
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Velocity calculation at the waypoints
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I Manually specify waypoints
I based on cartesian linear and angle velocity of the tool frame

I Automatic calculation of waypoints in cartesian or joint space
I based on heuristics

I Automatic determination of the parameters
I based on continous acceleration at the waypoints
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Quintic polynomials
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

Example 5th-degree
θ(x) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5

Boundary conditions for start (x = t0) and goal (x = td):
I θ(t0) = posStart , θ(td) = posGoal
I ˙θ(t0) = velStart , ˙(td) = velGoal
I ¨θ(t0) = accStart , ¨(td) = accGoal
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Remarks on generation of trajectories
Trajectory Generation 1 - Solutions of trajectory generation Introduction to Robotics

I The smoothest curves are generated by infinitly often differentiable functions.
I ex

I sin(x), cos(x)
I log(x) (for x > 0)
I . . .

I Polynomials are suitable for interpolation
I Problem: oscillations caused by a degree which is too high

I Piecewise polynomials with specified degree are applicable
I cubic polynomial
I splines
I B-Splines
I . . .
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Factors for time optimal motion – Arc Length
Trajectory Generation 1 - Optimizing motion Introduction to Robotics

If the curve in the n-dimensional space is given by

q(t) = [q1(t), q2(t), . . . , qn(t)]T

then the arc length can be defined as follows:

s =
∫ t

0
‖q̇(t)‖2 dt

where ‖q̇(t)‖2 is the euclidean norm of vector dq(t)/dt and is labeled as a flow
velocity along the curve.

‖x‖2 :=
√
x2

1 + · · ·+ x2
n
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Factors for time optimal motion – Arc Length (cont.)
Trajectory Generation 1 - Optimizing motion Introduction to Robotics

With the following two points given
p0 = q(ts) und p1 = q(tf ),
the arc length L between p0 and p1 is the integral:

L =
∫ p1

p0
ds =

∫ tf

ts
‖q̇(t)‖2 dt

“The trajectory parameters should be calculated in the way that the arc length
L under the given constraints has the shortest possible value.”
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Factors for time optimal motion – Curvature
Trajectory Generation 1 - Optimizing motion Introduction to Robotics

Curvature
Defines the sharpness of a curve. A straight line has zero curvature. Curvature of
large circles is smaller than of small circles.

At first the unit vector of a curve q(t) can be defined as

U = dq(t)
ds = dq(t)/dt

ds/dt = q̇(t)
|q̇(t)|

If s is the parameter of the arc length and U as the unit vector is given, the curvature
of curve q(t) can be defined as

κ(s) =
∣∣∣∣dU
ds

∣∣∣∣
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Factors for time optimal motion – Bending Energy
Trajectory Generation 1 - Optimizing motion Introduction to Robotics

The bending energy of a smooth curve q(t) over the interval t ∈ [0,T ] is defined as

E =
∫ L

0
κ(s)2ds =

∫ T

0
κ(t)2|q̇(t)|dt

where κ(t) is the curvature of q(t).

“The bending energy E of a trajectory should be as small as possible under
consideration of the arc length.”
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Factors for time optimal motion – Motion Time
Trajectory Generation 1 - Optimizing motion Introduction to Robotics

If a motion consists of n successive segments

qj , j ∈ {1 . . . n}

then
uj = tj+1 − tj

is the required time for the motion in the segment qj . The total motion time is

T =
n−1∑
j=1

uj
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Minimum jerk trajectory
Trajectory Generation 1 - Optimizing motion Introduction to Robotics

I Proposed by Flash & Hogan (1985) [7]
I Optimization Criterion minimizes the jerk in the trajectory

H(x(t)) = 1
2

∫ tf

t=ti

...x 2dt

I The minimum-jerk solution can be written as:

x(t) = xi + (xi − xf )(15( td )4 − 6( td )5 − 10( td )3)

I Predicts bell shaped velocity profiles

ẋ(t) = 1
d (xi − xf )(60( td )3 − 30( td )4 − 30( td )2)
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Minimum jerk trajectory (cont.)
Trajectory Generation 1 - Optimizing motion Introduction to Robotics
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Dynamical constraints for all joints
Trajectory Generation 1 - Optimizing motion Introduction to Robotics

The borders for the minimum motion time Tmin for the trajectory qi
j(t) are defined

over dynamical parameters of all joints.
For joint i ∈ {1 . . . n} of trajectory part j ∈ {1 . . .m} this kind of constraint can be
described as follows

|q̇i
j (t)| ≤ q̇i

max (44)
|q̈i

j (t)| ≤ q̈i
max (45)

|mi
j(t)| ≤ mi

max (46)

I mi is the torque (moment of force) for the joint i and can be calculated from the
dynamical equation (motion equation).

I q̇i
max , q̈i

max and mi
max represent the important parameters of the dynamical

capacity of the robot.
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Reflexxes Motion Libraries
Trajectory Generation 1 - Application Introduction to Robotics

I Reflexxes Motion Libraries (Download, Overview)
I specialize on instantaneously generating smooth trajectories based on joint states

and their limits
I Prof. Dr. Torsten Kroeger

I paper: Online Trajectory Generation: Basic Concepts for Instantaneous Reactions to
Unforeseen Events [8]
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Examples of using Reflexxes in TAMS
Trajectory Generation 1 - Application Introduction to Robotics

I Real-time object shape detection using ROS, the KUKA LWR4+ and a
force/torque Sensor
I to specify the target position and target velocity at the target position

24
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Examples of using Reflexxes in TAMS (cont.)
Trajectory Generation 1 - Application Introduction to Robotics

I Adaptive pouring of liquids based on human motions using a Robotic Arm
I to recalculate the speeds of a joint trajectory (returned by CCP) to match the original

time-line of the

25

24https://tams.informatik.uni-hamburg.de/publications/2017/MSc_Stephan_Rau.pdf
25https://tams.informatik.uni-hamburg.de/publications/2018/MSc_Jeremias_Hartz.pdf
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