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Machine Learning in Robotics

I Machine Learning
I non-linear structure extraction

from data
I robust to (sensor) noise
I requires big data sources

I Intelligent Robotics
I interprets complex sensor data
I requires expert roboticists
I data acquisition in the real world
I “intelligent behavior” is no

well-defined function
Both fields can support each other,
but come with their own challenges

c©Andrew Ng @ Coursera
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Machine Learning

Machine Learning is a field of computer science that gives
computers the ability to perform tasks without being explicitly

programmed.

ML addresses the problem of optimizing parameters θ of a
parameterized family of functions fθ, such that an error function

Ef (θ) is minimized.

This includes . . .
I the definition of the space of permissible functions fθ
I the definition of the error function Ef
I appropriate optimization methods
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Function Optimization

The relevant optimization problem is defined as estimating
θ∗ = argmin

θ
(Ef (θ))

I any optimization method
can be applied

I most practical methods
exploit the gradient ∇Ef

I this is computed

I analytically
I by automatic differentiation
I stocastically

(particle techniques)

I smooth(er) gradients allow
better optimization
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Define the problem

I intelligent robots should be able to perform everyday activities

I most commonsense concepts are hard to formulate in function
notation

I most tasks/goals are hard to define with reasonable gradients

The common approach:
I Instead of trying to solve everything as one problem, many

things are programmed and a restricted, but crucial,
component is learnt
I use traditional robotics to solve what is hard to learn
I use ML to solve what is hard to program

Marc Bestmann / Michael Görner / Jianwei Zhang 6



University of Hamburg

MIN Faculty
Department of Informatics

1.1 Machine Learning in Robotics - Introduction 64-424 Intelligent Robotics

Define the function

Here are some classes of learnable functions:
I label-classification of sensory stimuli

I understand what is there
I grade quality of candidates

I predict probability of success
I real-world dynamics for simulation

I approximate physics instead of modelling
I imitate functions from different inputs (reparameterization)

I compute on RGB images instead of SE (3)

I traditional functions from Reinforcement Learning:
Q(s, a), V (s), A(s, a), π(s)
I choose domains for states (or observations) s and actions a
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Image Classification / Class Prediction

. . . is probably the best-understood subfield of applied ML
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Image Classification / Class Prediction

. . . is probably the best-understood subfield of applied ML
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Image Classification - How to apply it?

I Classification yields one class label per image
I Robots generate camera streams that can be classified

2016 Social Robotics Hackathon
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Image Classification - How to apply it?

But . . .
I how should the robot respond if it observes the label “table”,

“floor”, “human”, or “blue cylinder”?
I useful if the robot already knows the object’s position

e.g. preceding segmentation, prior knowledge

I Even if a label is not selected, it might be accurate
I Robot camera streams do not have capture bias,

so the object is usually not in the image center
I For most applications localization is required
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Image Localization - Object Coordinates

I We can train networks to directly get the X,Y image
coordinates of an object

I Typically using first convolution layers and then some fully
connected ones

I This gives us no information of the size

Speck et al., Ball Localization for Robocup Soccer Using Convolutional Neural Networks, RoboCup 2016
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Video

Video
https://www.youtube.com/watch?v=buPWpBkR4aU&t=199
(3:20-)
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Image Localization - Bounding Boxes

3

I box-localization in image space
I much progress with R-CNN, Fast

R-CNN, Faster R-CNN, YOLO
I bounding boxes do not describe

object shape
I sufficient to look towards a face
I insufficient to pull a door handle
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Video

Video
https://www.youtube.com/watch?v=tZnBZsUAVqs&t=7s (0:07 -
1:00)
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Image Localization - Pixel Labeling

3 4

I upsampled conv-net output
I or masks for regions
I too much information

I object boundaries are
usually not pixel-accurate

I too few information

I needs further processing to
get coordinates

I a pixel-mask of a known
mug does not show the
orientation of its handle

I interaction often requires
6D pose estimation
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Image Localization - Pixel Labeling - Example

Daniel Speck, Marc Bestmann, Pablo Barros: Towards Real-Time Ball Localizationusing CNNs, 2018
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Object Pose Estimation
I need to estimate full pose of

the observed object
I accurate estimation remains

challenging
I successful pipelines often

combine
I visual learning
I feature matching
I pose tracking
I local model fitting

I there are many impressive
demos but no silver bullet

5

6
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Video

Example video
https://www.youtube.com/watch?v=yVGViBqWtBI
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Tactile Classification - Task

I Task: detect slippage of held objects online
I differentiate between rotational & translational slippage
I classification for other modalities

7
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Tactile Classification - Method

I measure tactile arrays,
16x16 taxels at 1.9kHz

I crop to center 12x12 taxels
I consider 64ms windows
I compute short time Fourier

transforms
I Input: 12x12 images with 32

amplitude channels
I convolutional NN with 3-5 layers
I Output:

{stable, translation, rotation}
I test accuracy 97.89% at 125 Hz
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Tactile Classification - Data Acquisition

I user places object between arms,
defines rotational / translational
slippage

I controllers relax force until
slippage occurs

I detect slippage with an
orthogonal sensor

I episode runs until no contact is
detected

I data augmentation: rotate inputs
to account for gravity

Marc Bestmann / Michael Görner / Jianwei Zhang 23



University of Hamburg

MIN Faculty
Department of Informatics

1.3 Machine Learning in Robotics - Tactile Data 64-424 Intelligent Robotics

Tactile Simulation - Task

I Task: simulate raw readings of a complex tactile sensor

8
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Tactile Simulation - Method

I restrict to single-contact cases
I Input: [contact point, 3x force vectors, sensor temperature]
I input is available in physics simulators at each time step
I Output: 23 sensor channels
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Tactile Simulation - Data Acquisition

I fiducial-based tracking of sensor and
a contact pin

I contact pin mounted on 6-axis
force-torque sensor

I compensate for visual inaccuracies
by optimizing setup model based on
sensor data

I record 300.000 tactile readings with
varying contacts
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Grasping Objects

I Picking up objects is a common task for robots
I It is unclear where an object should be grasped
I This is influenced by

I What kind of gripper does the robot have?
I How stable would the resulting grasp be?
I Has the object handle-like structures?
I Why is the object being picked up?

I If all objects are modeled
I Feasible grasps can be annotated in models
I The problem becomes pose estimation
I If the pose is known, grasps can be looked up

I Most research focuses on 2-finger parallel grippers
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Grasp Pose Generator - Task

I Task: perform successful
6dof grasps from cluttered
scenes of unknown objects

I generate “good” grasp points
I based on RGB-D camera
I learn scoring function for

candidate grasps
I 93% grasp success in

experiments
9
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Grasp Pose Generator - Method

I sample 6dof grasps, s.t.

I gripper encloses at least
one point

I gripper is not in collision
with the point cloud

I extract multi-image
representation from enclosed
point cloud and
observed/occluded volume

I Input: 15 constructed
images

I Output: grasp probability
I choose best-ranking samples

for execution
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Grasp Pose Generator - Data Acquisition

I based on object dataset
pairing object views & 55
object meshes

I generate random grasp
candidates for views

I label based on geometric
antipodal force-closure
criterium

I simulated data (3DNET)
produced inferior results due
to simulation discrepancy
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Learning Grasps - Supersizing Self-Supervision

I Task: predict 3dof grasp
poses (x , y , ϕ)

I first paper to collect 500h
experience for grasping

I collection procedure:
I Move gripper above

sampled ROI
I Sample grasp point and

orientation
θ ∈ {0◦, 10◦, . . . 170◦}

I Pick object and check
gripper force sensor for
success

10

I 66% success rate on test
objects
73% for known objects
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Learning Grasps - Supersizing Self-Supervision - Method

10

I adapt AlexNet and retrain last layers
I output softmax layer with 18 possible angles ϕ
I at runtime,

I sample image patches on ROI
I evaluate them according to network
I execute highest-scoring one
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Video

Video
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Inverse Kinematics

example IK solution for a UR5 arm

I IK is one of the oldest
problems in robotics

I given a robot kinematic
design, find a function that
maps the Cartesian
workspace of the tool frame
to joint configurations

I a single pose often maps to
multiple joint configurations

I for many existing robot arms
fast analytical solutions exist
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Inverse Kinematics (2)
I “well-defined” function
I easy to generate samples
I but . . .

I applications require very high accuracy solutions
position error < 10−5m

I multiple solutions disrupt training gradient

I training a network for 6dof
can succeed

I demonstrated for continuous
sub-workspaces with current
joint state as input

I online optimization performs
better

11
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IK to absurdum

I Learning IK for 2dof with 2.5cm accuracy
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Learning Hand-Eye Coordination - Task

12

I Task: pick objects from
cluttered container

I learn “Q-like” function by
supervised learning

Marc Bestmann / Michael Görner / Jianwei Zhang 37



University of Hamburg

MIN Faculty
Department of Informatics

1.6 Machine Learning in Robotics - Policy Learning 64-424 Intelligent Robotics

Learning Hand-Eye Coordination - Method

I Input:
I o - 2 RGB images of

current and first state
I a - 3D Cartesian force

vector & a twist ϕ
I Output: eventual grasp

success `

I the network is trained to
predict the eventual grasp
success ` of the attempt

I online controller runs
stochastic search to find
action with good prediction
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Learning Hand-Eye Coordination - Data Acquisition

I 6-14 robots running for 2 months
I heuristics to automatically lift arm up if “not promising”
I grasp if at least 90% as successful as move
I servoing with 2-5Hz
I self-supervised exploration for 800.000 grasp attempts
I first 50% random commands (10-30% success already)

A tremendous achievement that works because the learning task is
designed to be as simple as possible, while it still defines the core
behavior.

Marc Bestmann / Michael Görner / Jianwei Zhang 39



University of Hamburg

MIN Faculty
Department of Informatics

1.6 Machine Learning in Robotics - Policy Learning 64-424 Intelligent Robotics

Video

Video
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End-to-End Visuomotor Control - Task

12

I Task: move red block into blue basket
I learn visuomotor policy π
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End-to-End Visuomotor Control - Method

I Input: o
I 4 last RGB images
I current joint angles

I Output: a
I 6 joint velocities
I softmax gripper action
I auxiliary outputs

I learn to imitate straight-line
motion planner

I originally sim2real
application with domain
randomization

I later demonstrated to be
trainable in reality (with
position targets)
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Reinforcement Learning
I Currently a hype topic in ML

I Especially regarding
robotics/motion

I Advances due to more
investment
I Most notably

Google/OpenAI
I and common environments

I OpenAI Gym
I RoboSchool
I PyBullet

I and baseline implementations
I Open AI baselines
I INRIA stable_baselines

https://en.wikipedia.org/wiki/Reinforcement_learning
Marc Bestmann / Michael Görner / Jianwei Zhang 43
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Vanilla PPO

Video:
https://www.youtube.com/watch?v=hx_bgoTF7bs
Live Demo Roboschool

N. Heess et al, Emergence of Locomotion Behaviours in Rich Environments, 2017
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Vanilla PPO - What is Learned
I Action: joint efforts

I Planar walker: 9 DOF
I Quadruped: 12 DOF
I Humanoid: 28 DOF
I Joints box constrained

I Observation proprioceptive
I Joint angles and velocities
I Velocimeter
I Accelerometer
I Gyroscope
I Contact sensors at feet and leg

I Observation exteroceptive
I Position in relation to center of the track
I Profile of the terrain ahead
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Vanilla PPO - What is Learned (cont.)
I Policy: two networks

I Only proprioceptive observations
I Only exteroceptive observations
I Type of network not clear (probably MLP)
I Somehow choose action together

I Reward
I Forward velocity
I Penalization for torques
I Stay at center of track

N. Heess et al, Emergence of Locomotion Behaviours in Rich Environments, 2017
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Vanilla PPO - How is it Trained
I Mujoco simulation

I Physical parameters unknown
I Rate of policy unknown

I PPO - Proximal Policy Optimization
I Simplified version of TRPO - Trust Region Policy Optimization
I Current policy is used to choose actions
I After an episode, advantages of those actions are computed
I The policy is updated so that good actions become more

propable and vice versa
I Updates are clipped to prevent the policy from leaving the area

where it can explore senseful
I Distribution through workers

I Each worker collects data and computes gradients
I Batch results are processed by chief
I New policy is distributed to workers

N. Heess et al, Emergence of Locomotion Behaviours in Rich Environments, 2017Marc Bestmann / Michael Görner / Jianwei Zhang 47
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Deep Mimic

Video:
https://www.youtube.com/watch?v=vppFvq2quQ0

X. Peng et al., DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, 2018
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Deep Mimic - What is Learned
I Action: joint position

I PD controllers compute effort
I "Observations" (States)

I Relative pose of links to pelvis
I Linear and angular velocity of links
I Phase ∈ [0, 1]
I Goal g

I Target heading (walk)
I Target position (kick, throw)

I Reward
I rt = ωI r I + ωG rG

I Closeness to mocap and goal
I r I = wPrP

t + w v r v
t + w er e

t + w c r c
t

I Reward based on difference in joint position/velocity, end-effector
position, CoM position
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Deep Mimic - What is Learned (cont.)
I Policy: single network

I Input goal and state
I 2 hidden layer with 1024 and 512 neurons
I ReLU activation
I Additional CNN for height map
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Deep Mimic - How is it Trained
I Mujoco simulation

I Physics parameter unknown
I 30 Hz

I Initial state distribution
I "Man muss immer umkehren" - Jacobi
I Easier to learn starting from the back (backplay)
I Reward clearer when near goal
I Choosing initial state simple with mocap

I Early termination
I Terminate episode if condition is reached
I Classic for walking: head is below certain height
I Reward for episode is set to zero
I Further shapes reward function
I Biases the data distribution to samples which are more favorable
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Motion capture - small excursus
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Motion capture - small excursus (cont.)
I Different ways to get the data

I Infra red reflectors
I LEDs blinking with different frequencies
I IMUs on all links
I Magnetic field based (hall sensor)
I Exoskeleton measuring angles

I Pro
I Faster learning
I Less exploits of glitches
I (Maybe) more useful on actual robot

Marc Bestmann / Michael Görner / Jianwei Zhang 53



University of Hamburg

MIN Faculty
Department of Informatics

1.7.3 Machine Learning in Robotics - Motion - Skills from Video 64-424 Intelligent Robotics

Motion capture - small excursus (cont.)
I Contra

I Expensive
I A lot of work
I Difficult to get data from animals, e.g. a tiger
I You look kind of stupid while recording
I Need to find a student which can do a round house kick
I Need to bring student into hospital after failed round house kick

There has to be a better way!
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Skills from Video

Video:
https://www.youtube.com/watch?v=4Qg5I5vhX7Q
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SFV - What is Learned
I Pose estimation

I 2D and 3D
I 2 different estimators OpenPose and Human Mesh Recovery

I Motion reconstruction
I Find optimal motion from single poses
I Enforce temporal consistency to reduce jitter and glitches

I Learning of motion is similar to DeepMimic, just without goal
I r = wPrP

t + wv r v
t + w er e

t + w c r c
t
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SFV - How is it Trained
I Pose estimators

I Supervised learning on single images
I Motion part

I Similar to DeepMimic

http://www.cs.cmu.edu/ yaser/

Marc Bestmann / Michael Görner / Jianwei Zhang 57



University of Hamburg

MIN Faculty
Department of Informatics

1.7.4 Machine Learning in Robotics - Motion - Central Pattern Generators 64-424 Intelligent Robotics

Do We Walk With Our Brain?

I How do humans compute their walking?
I Chickens can run without head
I Legend of Störtebecker

http://www.neurologie.usz.ch/ueber-die-klinik/veranstaltungen/Documents/7_hirnstimulation.pdf
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Central Pattern Generators

I Biological neural circuits in the spline
I Generate rhythmic output after being activated
I Used by humans for walking, breathing, swallowing, ...
I Models of this can be implemented for robots

Central Pattern Generator, Mark L. Latash et al., Biomechanics and Motor Control, pp.157-174
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Video

Trigger warning!
Video of experiment with real cat
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Central Pattern Generators

I Flexor and extensor neuron
I Activated with tonic (non-rhythmic) signal
I Different patterns with different weights

Central Pattern Generators for Gait Generation in Bipedal Robots, Almir Heralic et al., Humanoid Robots, New
Developments, 2007
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CPG - How is it learned

I It is not!
I Weights are hand crafted
I Learning would be possible either by direct parameter learning

or RL
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Evolutionary Approach

Video
https://www.youtube.com/watch?v=pgaEE27nsQw
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Evolutionary Approach - What is Learned

I Muscle structure of the robot
I Parameters of FSM for leg state
I Target poses
I Force applied in relation to feedback
I Initial pose

Geijtenbeek, Thomas, Michiel Van De Panne, and A. Frank Van Der Stappen. "Flexible muscle-based locomotion
for bipedal creatures." ACM Transactions on Graphics (TOG) 32.6 (2013): 206.

Marc Bestmann / Michael Görner / Jianwei Zhang 64



University of Hamburg

MIN Faculty
Department of Informatics

1.7.5 Machine Learning in Robotics - Motion - Evolutionary Approach 64-424 Intelligent Robotics

Evolutionary Approach - How is it Trained
I Evolution approaches in general

I Generate initial random population of parameter sets
I Loop

I Evaluate individuals based on fitness function
I Pick best
I Recombination / mutation

I Covariance matrix adaptation evolution strategy (CMA-ES)
I Pairwise dependency between parameters is represented by

covariance matrix
I This matrix is updated to increase fitness
I Good for ill-conditioned functions
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Simulation Downsides - The Reality Gap

I Difference between simulation and reality
I Wrong models

I Mass, inertia, size
I Sensor noise non Gaussian
I Actuator properties not correct
I Change over time
I No static values

I Friction / contact
I Soft bodies
I Environment model not correct

I Changing lighting conditions
I Cluttered background
I Non static background
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Simulation vs. Reality (cont.)
I Simulation physics not correct

I Discrete approximation of continuous system
I Simplifications due to performance bounds
I Glitches
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Bridging the Reality Gap

I What can we do?
I Improving simulation accuracy (smaller step size)

I Not enough to bridge reality gap
I Adding sensor noise

I Noise is not perfectly Gaussian
I Needs noise model, which can have errors

I Domain randomization
I Currently the most used approach
I Simulated variability in training time to make model generalize
I Implementation depends on the scenario

J. Tobin et al., Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World,
2017
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Learning Dexterity

Video
https://www.youtube.com/watch?v=jwSbzNHGflM&t=1s
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Learning Dexterity - What is Learned
I CNN for object pose detection

I Based on three camera inputs
I LSTM for finger actions given finger and object pose
I Both networks are concatinated

M. Andrychowicz et al., Learning Dexterous In-Hand Manipulation, 2018
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Learning Dexterity - How is it Trained

I PPO
I Domain randomization

I Object dimensions
I Object and finger masses
I Surface friction coefficients
I Robot joint damping coefficients
I Actuator controller P term (proportional gain)
I Joint limits
I Gravity vector
I Colors in simulation
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Learning Dexterity - Domain Randomization
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Learning Dexterity - Impact of Domain Randomization
I Median number of successes

I Without: 0
I With: 11.5

I Training simulated time
I Without: 3 years
I With: 100 years
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Learning Dynamic Skills

Video
https://www.youtube.com/watch?v=aTDkYFZFWug
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Learning Dynamic Skills - Overview

Marc Bestmann / Michael Görner / Jianwei Zhang 75



University of Hamburg

MIN Faculty
Department of Informatics

1.8 Machine Learning in Robotics - Simulation vs. Reality 64-424 Intelligent Robotics

Learning Dynamic Skills - What is Learned
I Policy Network

I MLP 2 hidden layers 256, 128 nodes
I Joint angles, velocities
I Joint state history
I Body height estimation (filtered forward kinematics)
I Body pose, twist (IMU)
I Previous action
I Command

I Actuator Network
I MLP 3 hidden layers with 32 nodes
I Velocity history
I Position error history

J. Hwangbo et al., Learning agile and dynamic motor skills for legged robots, Science Robotics 2018
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Learning Dynamic Skills - How is it Trained
I Randomized simulator model

I Links masses
I CoM positions
I Joint positions

I Policy Network
I RL with TRPO

I Actuator Network
I Supervised learning
I Data collection on robot with simple walk algorithm
I Joint Position error, Velocity, and Torque

Marc Bestmann / Michael Görner / Jianwei Zhang 77



University of Hamburg

MIN Faculty
Department of Informatics

1.8 Machine Learning in Robotics - Simulation vs. Reality 64-424 Intelligent Robotics

More Information

I We only had a quick overview, here are some further
information

I ML Foundations
I Machine learning lecture next semester
I Arxiv Insights - Youtube channel
I R. Sutton - Reinforcement Learning, an Introduction (free)
I Berkeley - Deep RL http://rail.eecs.berkeley.edu/deeprlcourse/

I Current advances
I Open AI blog - https://blog.openai.com/
I reddit.com/r/MachineLearning
I CORL conference (open access)

I If you have some good sources, tell me!
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Summary

I Intelligent Robotics encompasses many domains that can profit
from ML applications, including

I images
I tactile data
I inverse kinematics

I grasp estimation
I behavior policies
I . . .

I (uncorrelated) data is scarce, because it is collected at runtime
I to train in practice tasks require many simplifications and

resources or simulation
I successful approaches reduce the learning problem
I the resulting modules can be very robust and successful
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Discussion

What would you teach a robot?
Masterproject

Thesis
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