

https://tams.informatik.uni-hamburg.de/ lectures/2019ws/vorlesung/ir

Marc Bestmann / Michael Görner / Jianwei Zhang

Winterterm 2019/2020

Outline

1. Machine Learning in Robotics

1. Machine Learning in Robotics

Inverse Kinematics

Machine Learning in Robotics

- Machine Learning
 - non-linear structure extraction from data
 - robust to (sensor) noise
 - requires big data sources
- Intelligent Robotics
 - interprets complex sensor data
 - requires expert roboticists
 - data acquisition in the real world
 - "intelligent behavior" is no well-defined function

Both fields can support each other, but come with their own challenges

© Andrew Ng @ Coursera

Machine Learning

Machine Learning is a field of computer science that gives computers the ability to perform tasks without being explicitly programmed.

ML addresses the problem of optimizing parameters θ of a parameterized family of functions f_{θ} , such that an error function $E_f(\theta)$ is minimized.

This includes . . .

- \blacktriangleright the definition of the space of permissible functions f_{θ}
- \blacktriangleright the definition of the error function E_f
- appropriate optimization methods

Function Optimization

The relevant optimization problem is defined as estimating

$$heta^* = \mathop{argmin}_{ heta}(E_f(heta))$$

- any optimization method can be applied
- most practical methods exploit the gradient ∇E_f
- this is computed
 - analytically
 - by automatic differentiation
 - stocastically (particle techniques)

smooth(er) gradients allow better optimization

Define the problem

- ▶ intelligent robots should be able to perform everyday activities
- most commonsense concepts are hard to formulate in function notation
- most tasks/goals are hard to define with reasonable gradients

The common approach:

- ▶ Instead of trying to solve everything as one problem, many things are programmed and a restricted, but crucial, component is learnt
 - use traditional robotics to solve what is hard to learn

句

use ML to solve what is hard to program

Define the function

Here are some classes of learnable functions:

- ▶ label-classification of sensory stimuli
 - understand what is there
- grade quality of candidates
 - predict probability of success
- real-world dynamics for simulation
 - approximate physics instead of modelling
- ▶ imitate functions from different inputs (reparameterization)
 - compute on RGB images instead of SE(3)
- traditional functions from Reinforcement Learning: $Q(s, a), V(s), A(s, a), \pi(s)$

句

choose domains for states (or observations) s and actions a

1. Machine Learning in Robotics

Introduction

Images

Grasping
Inverse Kinematics
Policy Learning

Simulation vs. Reality

Conclusion

Image Classification / Class Prediction

... is probably the best-understood subfield of applied ML

```
3681796691
6757863485
21797/2845
4819018894
7618641560
7592658197
222234480
0 2 3 8 0 7 3 8 5 7
0146460243
7/2816986/1
```


Image Classification / Class Prediction

... is probably the best-understood subfield of applied ML

Image Classification - How to apply it?

- Classification yields one class label per image
- Robots generate camera streams that can be classified

2016 Social Robotics Hackathon

1.2 Machine Learning in Robotics - Images

Video

Video

Image Classification - How to apply it?

But . . .

- ▶ how should the robot respond if it observes the label "table", "floor", "human", or "blue cylinder"?
- useful if the robot already knows the object's position
 e.g. preceding segmentation, prior knowledge
- Even if a label is not selected, it might be accurate

卣

- Robot camera streams do not have capture bias, so the object is usually not in the image center
- For most applications localization is required

Image Localization - Object Coordinates

- ▶ We can train networks to directly get the X,Y image coordinates of an object
- Typically using first convolution layers and then some fully connected ones
- This gives us no information of the size

Speck et al., Ball Localization for Robocup Soccer Using Convolutional Neural Networks, RoboCup 2016

1.2 Machine Learning in Robotics - Images

Video

Video

https://www.youtube.com/watch?v=buPWpBkR4aU&t=199 (3:20-)

Image Localization - Bounding Boxes

- box-localization in image space
- much progress with R-CNN, Fast R-CNN, Faster R-CNN, YOLO
- bounding boxes do not describe object shape
 - sufficient to look towards a face.
 - insufficient to pull a door handle

Video

Video

https://www.youtube.com/watch?v=tZnBZsUAVqs&t=7s (0:07 -1:00)

Image Localization - Pixel Labeling

- or masks for regions
- too much information
 - object boundaries are usually not pixel-accurate
- too few information

- needs further processing to get coordinates
- a pixel-mask of a known mug does not show the orientation of its handle
- interaction often requires 6D pose estimation

Image Localization - Pixel Labeling - Example

heatmaps (FCNN output)

Object Pose Estimation

- need to estimate full pose of the observed object
- accurate estimation remains challenging
- successful pipelines often combine
 - visual learning
 - feature matching
 - pose tracking
 - local model fitting
- there are many impressive demos but no silver bullet

1.2 Machine Learning in Robotics - Images

Video

Example video

https://www.youtube.com/watch?v=yVGViBqWtBI

1. Machine Learning in Robotics

Tactile Data

Inverse Kinematics

Tactile Classification - Task

- ► Task: detect slippage of held objects online
- ▶ differentiate between rotational & translational slippage
- classification for other modalities

Tactile Classification - Method

- measure tactile arrays, 16x16 taxels at 1 9kHz
- crop to center 12x12 taxels
- consider 64ms windows
- compute short time Fourier transforms
- ▶ Input: 12×12 images with 32 amplitude channels
- convolutional NN with 3-5 layers
- Output: { stable, translation, rotation}
- ▶ test accuracy 97.89% at 125 Hz

- user places object between arms, defines rotational / translational slippage
- controllers relax force until slippage occurs
- detect slippage with an orthogonal sensor
- episode runs until no contact is detected
- data augmentation: rotate inputs to account for gravity

Tactile Simulation - Task

► Task: simulate raw readings of a complex tactile sensor

Tactile Simulation - Method

- restrict to single-contact cases
- ▶ **Input**: [contact point, 3x force vectors, sensor temperature]
- ▶ input is available in physics simulators at each time step
- ▶ Output: 23 sensor channels

Tactile Simulation - Data Acquisition

- fiducial-based tracking of sensor and a contact pin
- contact pin mounted on 6-axis force-torque sensor
- compensate for visual inaccuracies by optimizing setup model based on sensor data
- record 300.000 tactile readings with varying contacts

1. Machine Learning in Robotics

Introduction

lmages

Tactile Data

Grasping

Inverse Kinematics

Policy Learning

Motion

Simulation vs. Reality

Conclusior

卣

Grasping Objects

- ▶ Picking up objects is a common task for robots
- ▶ It is unclear where an object should be grasped
- This is influenced by
 - What kind of gripper does the robot have?
 - ▶ How stable would the resulting grasp be?
 - Has the object handle-like structures?
 - Why is the object being picked up?
- If all objects are modeled
 - Feasible grasps can be annotated in models
 - The problem becomes pose estimation
 - ▶ If the pose is known, grasps can be looked up
- Most research focuses on 2-finger parallel grippers

Grasp Pose Generator - Task

- ▶ Task: perform successful 6dof grasps from cluttered scenes of unknown objects
- generate "good" grasp points
- based on RGB-D camera
- learn scoring function for candidate grasps
- ▶ 93% grasp success in experiments

Grasp Pose Generator - Method

- sample 6dof grasps, s.t.
 - gripper encloses at least one point
 - gripper is not in collision with the point cloud
- extract multi-image representation from enclosed point cloud and observed/occluded volume

- ▶ Input: 15 constructed of images
- **Output**: grasp probability
- choose best-ranking samples for execution

Grasp Pose Generator - Data Acquisition

- based on object dataset pairing object views & 55 object meshes
- generate random grasp candidates for views
- ► label based on geometric antipodal force-closure criterium
- simulated data (3DNET) produced inferior results due to simulation discrepancy

Learning Grasps - Supersizing Self-Supervision

- ► Task: predict 3dof grasp poses (x, y, φ)
- first paper to collect 500h experience for grasping
- collection procedure:
 - Move gripper above sampled ROI
 - Sample grasp point and orientation $\theta \in \{0^{\circ}, 10^{\circ}, \dots 170^{\circ}\}$
 - Pick object and check gripper force sensor for success

▶ 66% success rate on test objects 73% for known objects

Learning Grasps - Supersizing Self-Supervision - Method

- adapt AlexNet and retrain last layers
- output softmax layer with 18 possible angles φ
- at runtime.
 - sample image patches on ROI
 - evaluate them according to network
 - execute highest-scoring one

 $1.4\ \mathsf{Machine}\ \mathsf{Learning}$ in Robotics - Grasping

Video

Video

1. Machine Learning in Robotics

Introduction Images Tactile Data Grasping

Inverse Kinematics

Policy Learning Motion Simulation vs. Reality Conclusion

Inverse Kinematics

example IK solution for a UR5 arm

- IK is one of the oldest problems in robotics
- given a robot kinematic design, find a function that maps the Cartesian workspace of the tool frame to joint configurations
- a single pose often maps to multiple joint configurations
- for many existing robot arms fast analytical solutions exist

Inverse Kinematics (2)

- "well-defined" function
- easy to generate samples
- but . . .
 - \blacktriangleright applications require very high accuracy solutions position error $<10^{-5} \text{m}$
 - multiple solutions disrupt training gradient
- training a network for 6dof can succeed
- demonstrated for continuous sub-workspaces with current joint state as input
- online optimization performs better

University of Hamburg

IK to absurdum

▶ Learning IK for 2dof with 2.5cm accuracy

1. Machine Learning in Robotics

Inverse Kinematics

Policy Learning

Motion

Learning Hand-Eye Coordination - Task

► **Task**: pick objects from cluttered container

▶ learn "Q-like" function by supervised learning

Learning Hand-Eye Coordination - Method

- ► Input:
 - o 2 RGB images of current and first state
 - a 3D Cartesian force vector & a twist φ
- ► Output: eventual grasp success ℓ

- ► the network is trained to predict the eventual grasp success \(\ell \) of the attempt
- online controller runs stochastic search to find action with good prediction

6

Learning Hand-Eye Coordination - Data Acquisition

- ▶ 6-14 robots running for 2 months
- heuristics to automatically lift arm up if "not promising"
- ▶ grasp if at least 90% as successful as move
- servoing with 2-5Hz
- ▶ self-supervised exploration for 800.000 grasp attempts
- ▶ first 50% random commands (10-30% success already)

A tremendous achievement that works because the learning task is designed to be as simple as possible, while it still defines the core behavior.

1.6 Machine Learning in Robotics - Policy Learning

Video

Video

End-to-End Visuomotor Control - Task

- ► Task: move red block into blue basket
- \blacktriangleright learn visuomotor policy π

End-to-End Visuomotor Control - Method

- Input: 0
 - 4 last RGB images
 - current joint angles
- Output: a
 - 6 joint velocities
 - softmax gripper action
 - auxiliary outputs

- learn to imitate straight-line motion planner
- originally sim2real application with domain randomization
- later demonstrated to be trainable in reality (with position targets)

1. Machine Learning in Robotics

Inverse Kinematics

Motion

Reinforcement Learning

- Currently a hype topic in ML
 - Especially regarding robotics/motion
- Advances due to more investment
 - Most notably Google/OpenAI
- and common environments
 - OpenAl Gym
 - RoboSchool
 - PyBullet
- and baseline implementations
 - Open AI baselines
 - INRIA stable baselines

Vanilla PPO

Video:

https://www.youtube.com/watch?v=hx_bgoTF7bs Live Demo Roboschool

N. Heess et al, Emergence of Locomotion Behaviours in Rich Environments, 2017

University of Hamburg

Vanilla PPO - What is Learned

- Action: joint efforts
 - Planar walker: 9 DOF
 - Quadruped: 12 DOF
 - Humanoid: 28 DOF
 - Joints box constrained
- Observation proprioceptive
 - Joint angles and velocities
 - Velocimeter
 - Accelerometer
 - Gyroscope
 - Contact sensors at feet and leg
- Observation exteroceptive
 - Position in relation to center of the track

句

Profile of the terrain ahead

Vanilla PPO - What is Learned (cont.)

- ► Policy: two networks
 - Only proprioceptive observations
 - Only exteroceptive observations
 - Type of network not clear (probably MLP)
 - Somehow choose action together
- Reward
 - Forward velocity
 - Penalization for torques
 - Stay at center of track

N. Heess et al. Emergence of Locomotion Behaviours in Rich Environments, 2017

- Mujoco simulation
 - Physical parameters unknown
 - Rate of policy unknown
- ▶ PPO Proximal Policy Optimization
 - Simplified version of TRPO Trust Region Policy Optimization
 - Current policy is used to choose actions
 - After an episode, advantages of those actions are computed
 - ► The policy is updated so that good actions become more propable and vice versa
 - Updates are clipped to prevent the policy from leaving the area where it can explore senseful
- Distribution through workers
 - ► Each worker collects data and computes gradients
 - Batch results are processed by chief
 - New policy is distributed to workers

Deep Mimic

Video:

https://www.youtube.com/watch?v = vppFvq2quQ0

X. Peng et al., DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, 2018

Deep Mimic - What is Learned

- Action: joint position
 - PD controllers compute effort
- "Observations" (States)
 - Relative pose of links to pelvis
 - Linear and angular velocity of links
 - ▶ Phase \in [0, 1]
 - ▶ Goal g
 - Target heading (walk)
 - ► Target position (kick, throw)
- Reward
 - $r_t = \omega^I r^I + \omega^G r^G$
 - Closeness to mocap and goal
 - $r^{I} = w^{P} r_{t}^{P} + w^{V} r_{t}^{V} + w^{e} r_{t}^{e} + w^{c} r_{t}^{c}$
 - Reward based on difference in joint position/velocity, end-effector position, CoM position

卣

University of Hamburg

Deep Mimic - What is Learned (cont.)

- ► Policy: single network
 - Input goal and state
 - 2 hidden layer with 1024 and 512 neurons
 - ReLU activation
 - Additional CNN for height map

Deep Mimic - How is it Trained

- Mujoco simulation
 - Physics parameter unknown
 - ▶ 30 Hz
- Initial state distribution
 - "Man muss immer umkehren" Jacobi
 - Easier to learn starting from the back (backplay)
 - Reward clearer when near goal
 - Choosing initial state simple with mocap
- Early termination
 - Terminate episode if condition is reached
 - Classic for walking: head is below certain height

卣

- Reward for episode is set to zero
- Further shapes reward function
- Biases the data distribution to samples which are more favorable

Motion capture - small excursus

Motion capture - small excursus (cont.)

- ▶ Different ways to get the data
 - Infra red reflectors
 - ► LEDs blinking with different frequencies
 - IMUs on all links
 - Magnetic field based (hall sensor)
 - Exoskeleton measuring angles
- Pro
 - Faster learning
 - Less exploits of glitches
 - (Maybe) more useful on actual robot

Motion capture - small excursus (cont.)

Contra

University of Hamburg

- Expensive
- A lot of work
- Difficult to get data from animals, e.g. a tiger
- You look kind of stupid while recording
- Need to find a student which can do a round house kick
- Need to bring student into hospital after failed round house kick

There has to be a better way!

Skills from Video

Video:

https://www.youtube.com/watch?v=4Qg5I5vhX7Q

SFV - What is Learned

- Pose estimation
 - 2D and 3D
 - ▶ 2 different estimators OpenPose and Human Mesh Recovery
- Motion reconstruction
 - Find optimal motion from single poses
 - Enforce temporal consistency to reduce jitter and glitches
- ▶ Learning of motion is similar to DeepMimic, just without goal
- $r = w^P r_t^P + w^v r_t^v + w^e r_t^e + w^c r_t^c$

SFV - How is it Trained

- Pose estimators
 - Supervised learning on single images
- Motion part
 - ► Similar to DeepMimic

Do We Walk With Our Brain?

- ▶ How do humans compute their walking?
- Chickens can run without head
- Legend of Störtebecker

http://www.neurologie.usz.ch/ueber-die-klinik/veranstaltungen/Documents/7_hirnstimulation.pdf

Central Pattern Generators

- Biological neural circuits in the spline
- Generate rhythmic output after being activated
- Used by humans for walking, breathing, swallowing, ...
- ► Models of this can be implemented for robots

Central Pattern Generator, Mark L. Latash et al., Biomechanics and Motor Control, pp.157-174

Video

Trigger warning! Video of experiment with real cat

1.7.4 Machine Learning in Robotics - Motion - Central Pattern Generators

Central Pattern Generators

- Flexor and extensor neuron
- Activated with tonic (non-rhythmic) signal
- Different patterns with different weights

Central Pattern Generators for Gait Generation in Bipedal Robots, Almir Heralic et al., Humanoid Robots, New Developments, 2007

CPG - How is it learned

- ▶ It is not!
- Weights are hand crafted
- ► Learning would be possible either by direct parameter learning or RL

Evolutionary Approach

Video

https://www.youtube.com/watch?v = pgaEE27nsQw

- Muscle structure of the robot
- ▶ Parameters of FSM for leg state
- Target poses
- Force applied in relation to feedback
- ▶ Initial pose

Subject	Parameters
Muscle physiology	3-30 *
Muscle geometry	12-39 *
State transition	3
Target features	14
Feedback control	14-63 *
Initial character state	6

Geijtenbeek, Thomas, Michiel Van De Panne, and A. Frank Van Der Stappen. "Flexible muscle-based locomotion for bipedal creatures." ACM Transactions on Graphics (TOG) 32.6 (2013): 206.

Evolutionary Approach - How is it Trained

- Evolution approaches in general
 - Generate initial random population of parameter sets
 - ► Loop

University of Hamburg

- Evaluate individuals based on fitness function
- Pick best
- Recombination / mutation
- Covariance matrix adaptation evolution strategy (CMA-ES)
 - Pairwise dependency between parameters is represented by covariance matrix
 - This matrix is updated to increase fitness
 - Good for ill-conditioned functions

Simulation Downsides - The Reality Gap

- Difference between simulation and reality
- Wrong models
 - Mass. inertia. size
 - Sensor noise non Gaussian
 - Actuator properties not correct
 - Change over time
 - No static values
- Friction / contact
- Soft bodies
- Environment model not correct.
 - Changing lighting conditions
 - Cluttered background
 - Non static background

卣

University of Hamburg

Simulation vs. Reality (cont.)

- Simulation physics not correct
 - Discrete approximation of continuous system
 - Simplifications due to performance bounds
 - Glitches

Bridging the Reality Gap

- ▶ What can we do?
- Improving simulation accuracy (smaller step size)
 - Not enough to bridge reality gap
- Adding sensor noise
 - Noise is not perfectly Gaussian
 - Needs noise model, which can have errors
- Domain randomization
 - Currently the most used approach
 - Simulated variability in training time to make model generalize
 - Implementation depends on the scenario

J. Tobin et al., Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, 2017

Learning Dexterity

Video

https://www.youtube.com/watch?v=jwSbzNHGflM&t=1s

Learning Dexterity - What is Learned

- CNN for object pose detection
 - Based on three camera inputs
- ► LSTM for finger actions given finger and object pose
- Both networks are concatinated

M. Andrychowicz et al., Learning Dexterous In-Hand Manipulation, 2018

Learning Dexterity - How is it Trained

- PPO
- Domain randomization
 - Object dimensions
 - Object and finger masses
 - Surface friction coefficients
 - Robot joint damping coefficients
 - Actuator controller P term (proportional gain)
 - Joint limits
 - Gravity vector
 - Colors in simulation

Learning Dexterity - Domain Randomization

University of Hamburg

Learning Dexterity - Impact of Domain Randomization

Median number of successes

Without: 0 ▶ With: 11.5

Training simulated time

▶ Without: 3 years ▶ With: 100 years

Learning Dynamic Skills

Video

https://www.youtube.com/watch?v=aTDkYFZFWug

Learning Dynamic Skills - Overview

Learning Dynamic Skills - What is Learned

- Policy Network
 - ▶ MLP 2 hidden layers 256, 128 nodes
 - Joint angles, velocities
 - Joint state history
 - Body height estimation (filtered forward kinematics)
 - Body pose, twist (IMU)
 - Previous action
 - Command
- Actuator Network
 - MLP 3 hidden layers with 32 nodes
 - Velocity history
 - Position error history

J. Hwangbo et al., Learning agile and dynamic motor skills for legged robots, Science Robotics 2018

Learning Dynamic Skills - How is it Trained

- Randomized simulator model
 - ▶ Links masses
 - CoM positions
 - ▶ Joint positions
- Policy Network
 - RL with TRPO
- Actuator Network
 - Supervised learning
 - Data collection on robot with simple walk algorithm
 - Joint Position error, Velocity, and Torque

More Information

- We only had a quick overview, here are some further information
- ML Foundations
 - Machine learning lecture next semester
 - Arxiv Insights Youtube channel
 - ▶ R. Sutton Reinforcement Learning, an Introduction (free)
 - Berkeley Deep RL http://rail.eecs.berkeley.edu/deeprlcourse/
- Current advances
 - Open AI blog https://blog.openai.com/
 - reddit.com/r/MachineLearning
 - CORL conference (open access)
- If you have some good sources, tell me!

Summary

- ▶ Intelligent Robotics encompasses many domains that can profit from ML applications, including
 - images
 - tactile data
 - inverse kinematics

- grasp estimation
- behavior policies
- (uncorrelated) data is scarce, because it is collected at runtime
- to train in practice tasks require many simplifications and resources or simulation
- successful approaches reduce the learning problem
- the resulting modules can be very robust and successful

Discussion

What would you teach a robot?

Masterproject Thesis

[allowframebreaks] Literature list

- [1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
- [2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012
- [3] Martin Meier, Florian Patzelt, Robert Haschke, and Helge J Ritter. Tactile convolutional networks for online slip and rotation detection. In International Conference on Artificial Neural Networks, pages 12–19. Springer, 2016.
- [4] Markus Mathias, Radu Timofte, Rodrigo Benenson, and Luc Van Gool. Traffic sign recognition—how far are we from the solution? In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1-8. IEEE, 2013.

