

MIN Faculty Department of Informatics

Integration of Conductive Materials and SMD-Components into the FDM Printing Process for Direct Embedding of Electronic Circuits

Florens Wasserfall wasserfall@informatik.uni-hamburg.de

PhD Thesis Defense

University of Hamburg TAMS

January 27, 2020

Fused Deposition Modeling (FDM)

Motivation

Introduction				

Mission Statement

Introduction Hardware Related Work CAD / CAM Software Routing Inspection Evaluation Conclusion	
--	--

Full integration of electronic components and circuits into plastic objects in a single additive manufacturing process.

Mission Statement

Introduction				

Full integration of electronic components and circuits into plastic objects in a single additive manufacturing process.

+ Keep it low-cost!

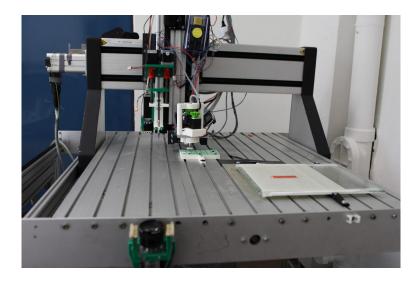
Introduction								
--------------	--	--	--	--	--	--	--	--

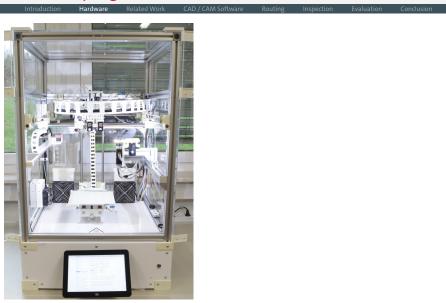
- 1. Hardware / Materials
- 2. Design (CAD) and Routing Software
- 3. Machine Control and Calibration
- 4. Documentation and Inspection

Introduction Hardware							
-----------------------	--	--	--	--	--	--	--

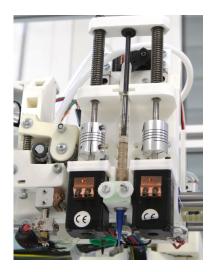
[1]: Florens Wasserfall. Embedding of SMD populated circuits into FDM printed objects. In *Proceedings of the 26th International Solid Freeform Fabrication Symposium*, pages 180–189, 2015

	Hardware				




Filament

Silver Ink


Ink Processing

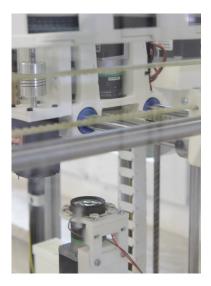
	Hardware						
--	----------	--	--	--	--	--	--

Conductive ink extruder

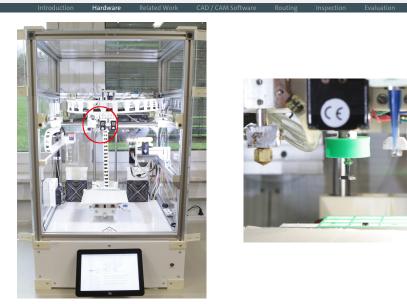
Introduction

Hardware

CAD / CAM Sof


CAM Software

Routing

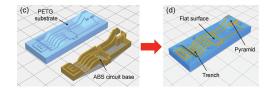

nspection

Conclusi

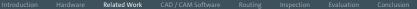
Cameras

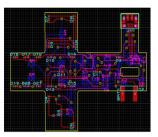
Vacuum gripper

Hardware

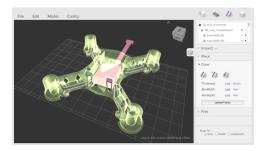


		Related Work						
--	--	--------------	--	--	--	--	--	--

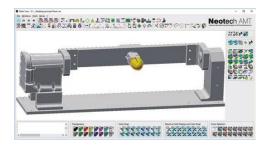

Related Work


- Hand crafted CAD design
- Folding / mapping of PCB layouts
- Autodesk Project Wire
- Augmented CAM
 Processors
- Nextra / Target 3001!

[Ji Li et al. Hybrid Additive Manufacturing Method for Selective Plating of Freeform Circuitry on 3D Printed Plastic Structure, 2019]

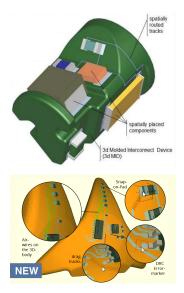

- Hand crafted CAD design
- Folding / mapping of PCB layouts
- Autodesk Project Wire
- Augmented CAM
 Processors
- Nextra / Target 3001!

	Related Work			


- Hand crafted CAD design
- Folding / mapping of PCB layouts
- Autodesk Project Wire
- Augmented CAM
 Processors
- Nextra / Target 3001!

[Autodesk]

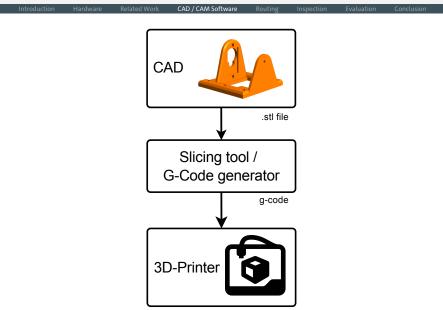
	Related Work			


- Hand crafted CAD design
- Folding / mapping of PCB layouts
- Autodesk Project Wire
- Augmented CAM Processors
- Nextra / Target 3001!

[Ankenbrand et al. Mechatronic Integrated Devices, 2019]

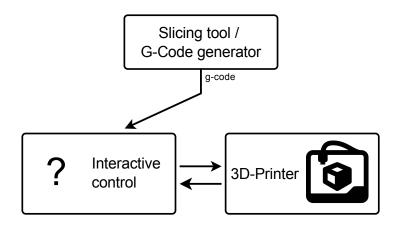
		Related Work					
--	--	--------------	--	--	--	--	--

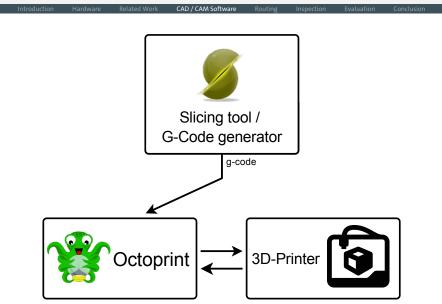
- Hand crafted CAD design
- Folding / mapping of PCB layouts
- Autodesk Project Wire
- Augmented CAM Processors
- Nextra / Target 3001!

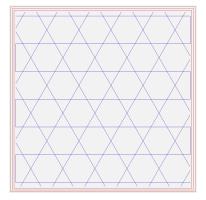


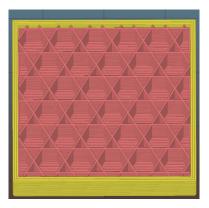


			CAD / CAM Software					
--	--	--	--------------------	--	--	--	--	--

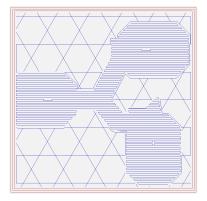

CAD / CAM Software

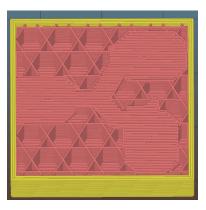

 [2]: Florens Wasserfall, Daniel Ahlers, Norman Hendrich, and Jianwei Zhang.
 3D-Printable Electronics - Integration of SMD Placement and Wiring into the Slicing Process for FDM Fabrication. In *Proceedings of the 27th International Solid Freeform Fabrication Symposium*, pages 1826–1837, Austin, 2016

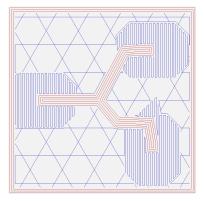


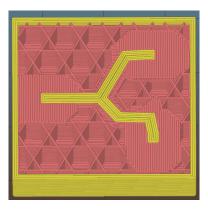


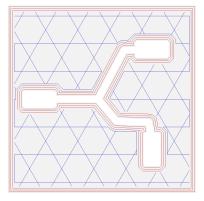
Software User Interface

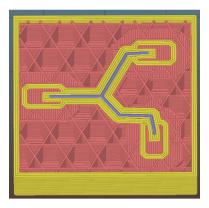

	Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion
_								

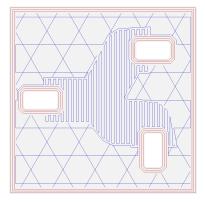

		CAD / CAM Software		

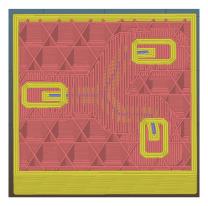


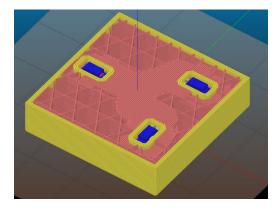

		CAD / CAM Software		



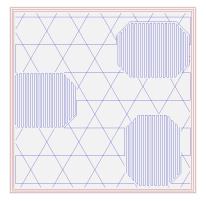

		CAD / CAM Software		

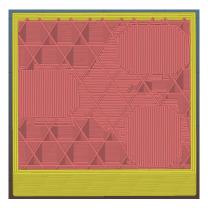



	CAD / CAM Software		



		CAD / CAM Software		





	CAD / CAM Software			

		CAD / CAM Software		

Introduction

e Related W

CAD / CAM So

AM Software Routing

ection Eva

Conclusio

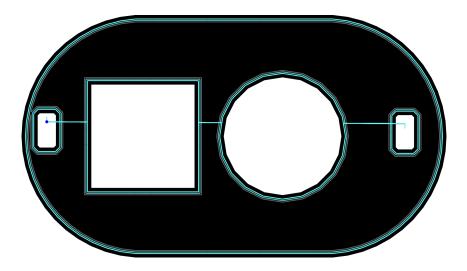
[3]: Florens Wasserfall. Topology-Aware Routing of Electric Wires in FDM-Printed Objects. In *Proceedings of the 29th International Solid Freeform Fabrication Symposium*, pages 1649–1659, Austin, 2018

Planar Routing

Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion
					5		

Planar Routing

Related Work


Introduction

CAD / CAM Software

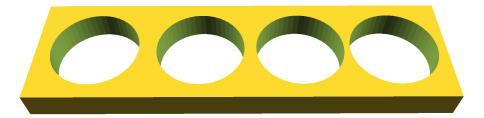
Routing

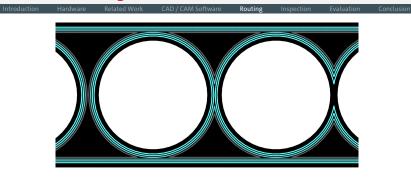
Conclusion

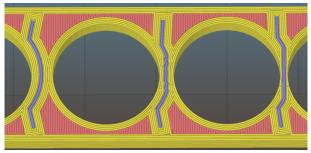
Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion

Related Work

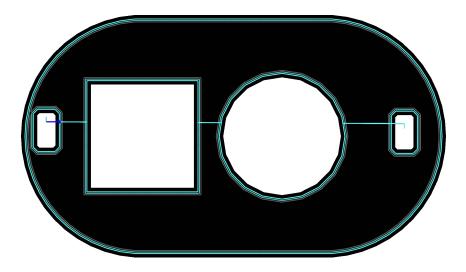
Introduction

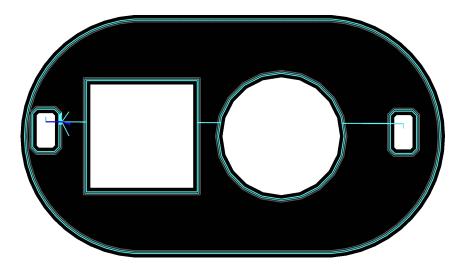

	<i>#####</i>	\$///////
1 Perimeter	2 Perimeter	4 Perimeter
Offset	Offset	Offset

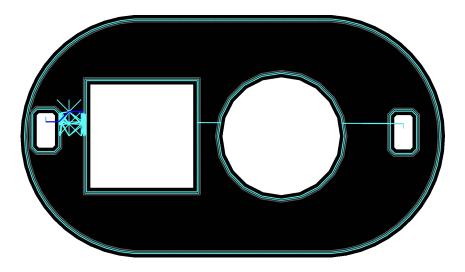

CAD / CAM Software


Routing

Conclusion

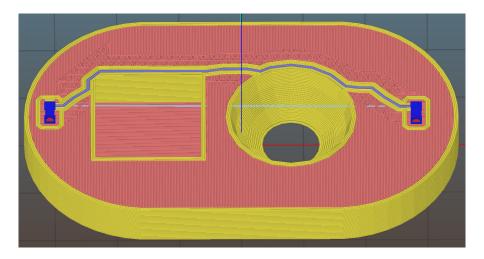

Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion

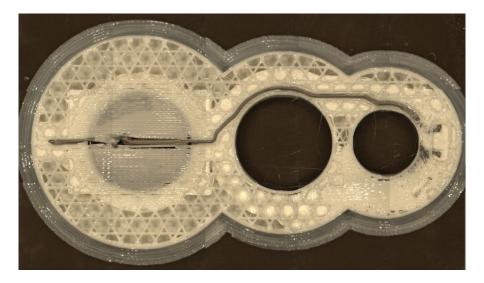



		Routing		

		Routing		

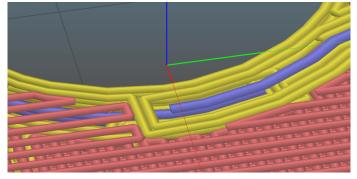
		Routing		

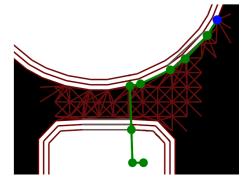

		Routing		

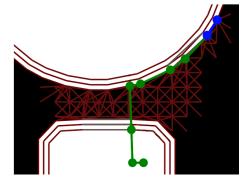

		Routing		
			_	
\mathbb{A}		XIXAX		

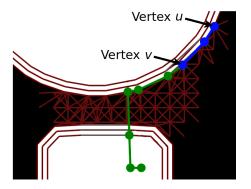
Pouting

					Routing				
--	--	--	--	--	---------	--	--	--	--

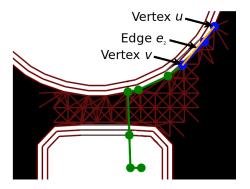

					Routing				
--	--	--	--	--	---------	--	--	--	--


						Routing				
--	--	--	--	--	--	---------	--	--	--	--


		Routing		


Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion

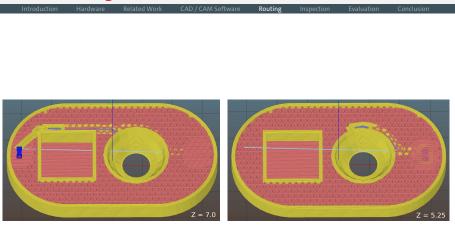
Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion



		Routing		

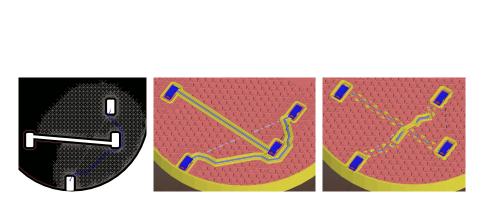
- ▶ overlap = 2mm
- ► grid_step_distance ≤ overlap

Introduction Hardware Related Work CAD / CAM Software Routing Inspection Evaluation Conclusion	Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion
--	--------------	----------	--------------	--------------------	---------	------------	------------	------------



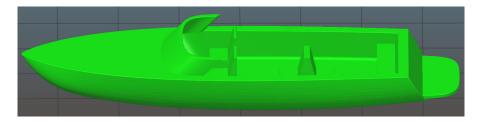
- ▶ overlap = 2mm
- ▶ grid_step_distance ≤ overlap

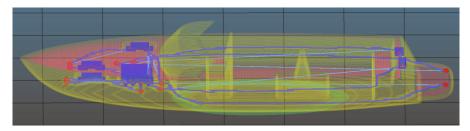
Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion
		Vertex u				• • ••	
	E	dge e		Edge e_1	>	- -	
< No. 100 No.	Vert	ex v					- 🟓
	Vere			Edgo o			é
			\Diamond	Edge e_2	>	/	
XXX			\bigotimes				
			\mathbf{i}				
				·			
			•				
				Edge e_n	·····>		
		••)


- ▶ overlap = 2mm
- ► grid_step_distance ≤ overlap

3D Routing - Results

Collision Avoidance


Introduction



Routing

3D Routing Results

					Routing				
--	--	--	--	--	---------	--	--	--	--

Introduction Hardware Related Work CAD / CAM Software Routing Inspection Evaluation Conclusion

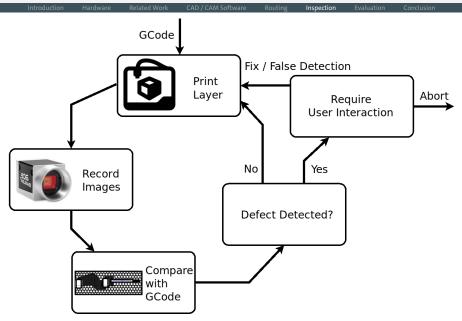
[4]: Florens Wasserfall, Norman Hendrich, and Daniel Ahlers. Optical In-Situ Verification of 3D-Printed Electronic Circuits. In *Proceedings of the 15th IEEE Conference on Automation Science and Engineering (CASE)*, pages 1302–1307, Vancouver, 2019

Common Issues

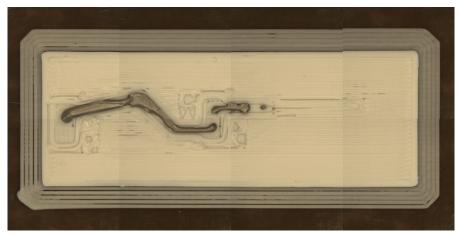
Inspection

Underextrusion

Short circuit



Plastic strand


Surface structure

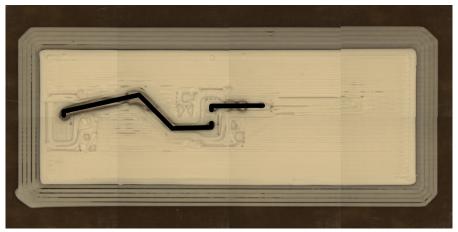
Detect Failure During Print-Time

Identify Ink vs. Plastic

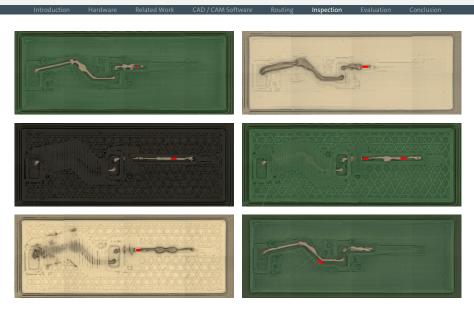
						Inspection			
--	--	--	--	--	--	------------	--	--	--

Raw image

Identify Ink vs. Plastic


						Inspection			
--	--	--	--	--	--	------------	--	--	--

Overlay T0 (plastic extruder)


Identify Ink vs. Plastic

						Inspection			
--	--	--	--	--	--	------------	--	--	--

Overlay T1 (conductive extruder)

Detection Results

Related Work

D / CAM Software

ection Evaluation

Conclusio

Evaluation

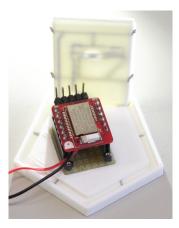
[5]: Florens Wasserfall, Norman Hendrich, Fabian Fiedler, and Jianwei Zhang.

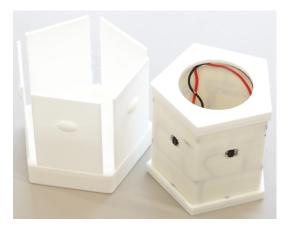
3D-Printed Low-Cost Modular Force Sensors. In *Proceedings of the 20th Intl. Conference on Climbing and Walking Robots (CLAWAR)*, pages 485–492, Porto, 2017

Instrumented Object

			Evaluation		
--	--	--	------------	--	--

Instrumented Object


Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion

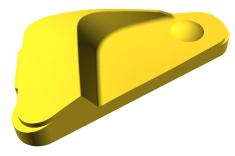


Instrumented Object

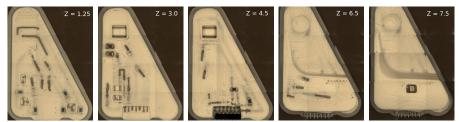
Introduction	Hardware	Related Work	CAD / CAM Software	Routing	Inspection	Evaluation	Conclusion	

Instrumented Object – Demo

Introduction



CAD / CAM Software


Evaluation

Integrated User Interface

						Evaluation		
--	--	--	--	--	--	------------	--	--

3D CT Image

Introductio

	Related Work	CAD / CAM Software	Routing	Evaluation	Conclusion
					4
			調		R
2	2				
				 Z	

Evaluation

troduction Hardware Related Work CAD / CAM Software Routing Inspection Evaluation Conclusion

Contributions

- Design- / Routing-Algorithms
- Toolchain for 3D-printed electronics
- Approach for automated visual process monitoring

ntroduction

are Related W

k CAD / CAM

'CAM Software R

ng Inspectio

ion Evalu

Conclusion

Contributions

- Design- / Routing-Algorithms
- Toolchain for 3D-printed electronics
- Approach for automated visual process monitoring

Future Work

- Going professional!
- More reliable hardware
- 5-Axis system
- Routing on object surface

Conclusion

Download / Sourcecode:

tams.informatik.uni-hamburg.de/research/3d-printing/conductive printing

github.com/platsch/Slic3r

github.com/platsch/OctoPNP

github.com/platsch/OctoCameraDocumentation

troduction H

e Related Wor

- Florens Wasserfall. Embedding of SMD populated circuits into FDM printed objects. In Proceedings of the 26th International Solid Freeform Fabrication Symposium, pages 180–189, 2015.
- [2] Florens Wasserfall, Daniel Ahlers, Norman Hendrich, and Jianwei Zhang. 3D-Printable Electronics - Integration of SMD Placement and Wiring into the Slicing Process for FDM Fabrication. In Proceedings of the 27th International Solid Freeform Fabrication Symposium, pages 1826–1837, Austin, 2016.
- [3] Florens Wasserfall. Topology-Aware Routing of Electric Wires in FDM-Printed Objects. In *Proceedings of the 29th International Solid Freeform Fabrication Symposium*, pages 1649–1659, Austin, 2018.
- [4] Florens Wasserfall, Norman Hendrich, and Daniel Ahlers. Optical In-Situ Verification of 3D-Printed Electronic Circuits. In *Proceedings of the 15th IEEE Conference on Automation Science and Engineering (CASE)*, pages 1302–1307, Vancouver, 2019.
- [5] Florens Wasserfall, Norman Hendrich, Fabian Fiedler, and Jianwei Zhang. 3D-Printed Low-Cost Modular Force Sensors. In *Proceedings of the 20th Intl. Conference on Climbing and Walking Robots (CLAWAR)*, pages 485–492, Porto, 2017.
- [6] Florens Wasserfall, Norman Hendrich, and Jianwei Zhang. Adaptive Slicing for the FDM Process Revisited. In Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE), pages 49–54, Xi'an, 2017.

[7] Daniel Ahlers, Florens Wasserfall, Norman Hendrich, and Jianwei Zhang. 3D Printing of Nonplanar Layers for Smooth Surface Generation. In *Proceedings of the 15th IEEE Conference* on Automation Science and Engineering (CASE), pages 1737–1743, Vancouver, 2019.

- [8] Marc Bestmann, Florens Wasserfall, Norman Hendrich, and Jianwei Zhang. Replacing Cables on Robotic Arms by Using Serial via Bluetooth. In *Proceedings of the IEEE Conference on Robotics and Biomimetics (ROBIO)*, pages 189–195, Macao, 2017.
- [9] Marc Bestmann, Bente Reichardt, and Florens Wasserfall. Hambot: An open source robot for robocup soccer. In 19'th RoboCup international Symposium, Hefei, 2015.
- [10] Dennis Krupke, Florens Wasserfall, Norman Hendrich, and Jianwei Zhang. Printable modular robot: an application of rapid prototyping for flexible robot design. *Industrial Robot: An International Journal*, 42(2):149–155, 2015.

Conclusion