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Motivation

 Image classification

 Object detection

 Image segmentation

 pixel wise classifiction

 shape

input image segmentation map segmentation overlay

3

dog

cat

[4]

[6]

[7]



Motivation

Image Segmentation in 2015
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Motivation
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Fundamentals –

Neural Networks

 Optimization problem

 All weights initialized randomly

 Loss is calculated (segmentation map/ground-truth)

 Weights optimized based on optimizer

x-input; w-weights; b-bias; y-output
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Fundamentals –

Convolutional Neural Networks
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Fundamentals –

CNN Image Classification

 Objects depending more on shape then on texture:

 small

 high distance
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How to avoid 
noisy boundaries and 
loss of detail in high 

distances?



Gated Shape CNN

 Title of Paper: “Gated-SCNN: Gated Shape CNNs for 

Semantic Segmentation”

 Authors: 

 Towaki Takikawa (NVIDIA)

 David Acuna (University of Waterloo)

 Varun Jampani (University of Toronto)

 Sanja Fidler (Vector Institute)

 Published: 12 July 2019, ICCV 2019
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Gated Shape CNN -

Approach

 Seperate color, texture and shape processing

 Information gets fused in very top layer

 New type of gates in architecture

 Cityscape dataset:
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Gated Shape CNN –

Architecture
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Gated Shape CNN –

Architecture
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e.g. DeepLabV3+ (Google)
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Gated Shape CNN –

Architecture
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Gated Shape CNN –

Shape Stream
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Gated Shape CNN –

Shape Stream (Residual Block)
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Conv: Convolution

BN: Batch Normalization

ReLu: Activation with Rectifier Linear Unit

Conv BN ReLU Conv BN ReLU+
input output
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Gated Shape CNN –

Shape Stream (Gate)
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Conv: Convolution

BN: Batch Normalization

ReLu: Activation with Rectifier Linear Unit

Conc: Concatenation

input regular

input shape

output gate

Conc BN Conv ReLU

Conv
Sig-

moid
BN Conv*
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Gated Shape CNN -

Output Gates 1-3
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Gated Shape CNN -

Output Shape Stream
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Gated Shape CNN –

Dual Task Loss

 Combination of the two loss functions 

 semantic segmentation

 boundary segmentation
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Experiments

 Segmentation mask

 Boundaries of predicted segmentation masks
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Experiments

 Distance based evaluation

 Mulitple crop factors
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Results –

Errors in Predictions
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[1]  original              ground-truth DeepLabV3+       Gated SCNN



Results –

Evaluation

 Baseline – DeepLabV3+

 Evaluation Metrics

 IoU = 
TP

TP+FP+FN
= intersection over union

 F-score along the boundary



TP
TP+FP

≙ precision



TP
TP+FN

≙ recall

 F-Score = 
2∗recall∗precision
recall+precision
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TP = true positive pixels

FP = false positive pixels

FN = false negative pixels



Results –

Intersection over Union (IoU)

25

80.8

[1]



Results –

Boundary F-Score
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Results –

Different Crop Factors
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 Mean intersection over union (mIoU)
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Conclusion
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How to avoid 
noisy boundaries and 

loss of detail in high distances?

[1] GSCNN (2019)                                         [3] SegNet (2015)



Conclusion

29

 Two-Stream CNN architecture leads to:

 sharper predictions around object boundaries

 a boosts performance on thinner and smaller objects

 crop mechanisms showed improvement in high distance objects

[1] GSCNN (2019)                                  [3] SegNet (2015)
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