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I Robot control is dominated by CPUs1 and MCUs2

I A CPU offers high abstraction levels but lose performance

I Field Programmable Gate Array (FPGA) technology improves

I In special applications they outperform CPUs

I High performance computing by concurrent hardware

(a) FPGA architecture [10]

(b)

x86 processor [6]
(c)

ARM Cortex MCU [13]

1Central Processing Unit
2Microcontroller Unit
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I Goal: speeding up processing time

I Idea: intelligent behaviour can be determined by reactivity

I ... fast reaction results in more intelligent behaviour

I Example: time constraints in collision avoidance

Figure: [1]
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Video

DLR Crash Report [4]
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I Paper: ’Fast Real-Time LIDAR Processing on FPGAs’ [12] by
Shih et al.

I Speed up airborne LIDAR processing by multi-level parallelism

I Published: ERSA 2008 May 2014 (2008)

I Paper: ’Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA’ [9] by Lyu, Bai and Huang

I Convolutional Neural Networks (CNNs) on FPGAs

I Published: IEEE International Symposium on Circuits and
Systems 2018-May (2018)
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I Integrated Circuits (ICs) with reconfigurable components

I Basic elements: memory cells, logical gates and flip flops

I Peripheral components: dedicated memory blocks, clock
generators, Digital Signal Processing (DSP) blocks ...

I Core functionality: Configurable Logic Blocks (CLBs) and
connection blocks

Figure: FPGA architecture [10]
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I Programming i.e. configuration by special software (IDEs3)

I Mapping of electronic circuit descriptions to CLBs

I Setting of a CLB by Look Up Tables (LUT)

I Efficient routing between components necessary (setting of
connection blocks)

Figure: FPGA simplified architecture [2]

3Integrated Development Environment
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I Programming for a computer: writing instructions for a CPU

I Sequential execution of the program

I Programming for an FPGA: writing a hardware description

I Use of Hardware Description Language (HDL)

I Hardware description is translated into configuration data

I Effectively creating circuits in hardware (concurrent)

– 9 / 60



FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

1 library ieee;
2 use ieee.std_logic_1164.all;
3
4 entity and_logic is
5 port
6 (
7 in_1 : in std_logic;
8 in_2 : in std_logic;
9 out_and : out std_logic

10 );
11 end and_logic;

12 architecture impl of and_logic is
13 begin
14 out_and <= in_1 and in_2;
15 end impl;

(a) VHDL ‘and’ logic [2]

Figure: Logical gate (and) [2]

3FPGA section is based on [2]
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Introduction

LIDAR coordinates calculation

Hardware implementation

Results
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Fast Real-Time LIDAR Processing on FPGAs
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I Terrain mapping by Airborne Laser Scanning (ALS)

I Provide high resolution position information from a remote
distance

I Multi-modal system: LIDAR, GPS4, IMU5

I Fast onboard processing in time constraint scenario

I Difficult to achieve by traditional embedded CPU solutions

I Micro-laser altimeter developed by NASA: pulse rate 10kHz,
10x10 detector generates 1 ∗ 106 return events / second

4Global Positioning System
5Inertial Measurement Unit
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I Multi-level parallelism of FPGA is exploited

I Nearly 14x speedup obtained over software solution

I Different setups are investigated and compared

I Extension of the system is possible (pattern recognition, feature
extraction)

I Possible application: autonomous driving where resources are
rare and real-time computing is necessary
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I Major components: pulsed laser, scanner and optics, receiver
and receiver electronics, position and navigation systems

I Receiver registers laser photons reflected from the terrain

I GPS provides better absolute position solution

I IMU updates aircraft attitude i.e. the roll, pitch and yaw angles

I Data fusion of GPS and IMU improves estimation of trajectory

Figure: LIDAR terrain mapping [12]
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I Fundamental calculation:

Angles from IMU: roll ϕr, pitch ϕp, yaw ϕy

Position from GPS: Xac, Yac, Zac

LIDAR: range ρ, angle Θ

Return’s coordinates are obtained by:

1. Determine unit vector for each laser pulse using scan angle Θ

2. Align aircraft fixed vectors to earth fixed GPS coordinates

3. Apply generated rotation matrices to unit vector

4. Scale rotated unit vector by range value ρ

5. Translate the obtained range vector to GPS coordinate frame
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I Resulting formula:
X

Y

Z

 =


ρ (CϕyCϕrSΘ− CϕySϕrCϕpCΘ− SϕySϕpCΘ) +Xac

ρ (SϕyCϕrSΘ− SϕySϕrCϕpCΘ− CϕySϕpCΘ) + Yac

ρ (−SϕrSΘ− CϕrCϕpCΘ) + Zac



where C and S abbreviate cosine and sine operations.
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I Different update rate of parameters: multi rate

I Laser returns are independent of one another

I Parallel processing by buffering in FPGA

I One buffer captures 33,000 laser returns and angles plus IMU
angles and GPS position

Figure: Buffering of LIDAR input [12]
– 17 / 60
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I Host-PC captures data from LIDAR

I Data transferred to FPGA from Host using Direct Memory
Accesss (DMA)

I Pipelining applies to data input

I LIDAR processing core on FPGA computes coordinates

I State machine governs data flow

I Parallel computation of (X,Y,Z) and angular values ϕ
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Figure: Dataflow of onboard LIDAR processing [12]
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I Xilinx Virtex2 Pro 50 FPGA with clock frequency 125MHz

I Processes 1s of data in below 1ms

I Cray XD1 (super-) computer with 6x two 2.4GHz AMD
Opteron processors, only one node used for LIDAR

I Software baseline computed from a C application executed on a
2.4 GHz AMD Opteron processor

Figure: [12]
5The previous section is based on [12]
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Real-Time Road Segmentation Using LiDAR Data
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Introduction

Convolutional neural network design

Hardware implementation

Results
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Real-Time Road Segmentation Using LiDAR Data
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I Convolutional Neural Network based road segmentation
algorithm (semantic segmentation)

I Provide drivable region area

I Real time LIDAR processing on FPGA in 16.9 ms each scan

I Obtain 3D geometry information of vehicle surroundings with
very high accuracy

I Quality of road markings and light conditions less important

Figure: Camera view and LIDAR points [9]
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Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
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I Network: cascading blocks that contain a convolutional layer
and non-linear layer

I Multiplexing is applied on the processing blocks on the chip

I Goal: label the drivable region (free space)

I Input: LIDAR, GPS, IMU

I Pre-processing, neural network processing and post-processing

Figure: Input channel to NN [9]
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Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
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I Preprocessing: arrange data points and project into a 3D blob
with MxN tensors and C channels

I Input blob: 64 scan rows x 256 columns (polar angles) x 16
feature channels

Figure: Input map to NN [9]
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Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
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I Neural network processing by new network architecture

I Minimize memory by multiplexing blob memory

I Hidden layers use same structure

I All internal results can be stored in same memory space
directory

I No allocation or reshaping of the blob

Figure: CNN architecture [9]
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Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
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I Post processing: NN output is projected back to targeted views
(camera and top view)

I Challenge: non-uniformly distributed points in targeted view
after projection

I Determine contour by projecting furthest points in each angle
Θ (each column of output) onto target view

I Draw a polyline along those points on all angles of target view

I Add a straight line to the bottom and the polyline becomes a
polygon

I Polygon is treated as contour of drivable area (segmentation
result)
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Real-Time Road Segmentation Using LiDAR Data
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Figure: Drivable area on camera view and top view [9]
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Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
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I Memory usage: 64 memories x 256k bits for intermediate
feature maps

I 3D convolution is broken into 64 parallel 2D convolutions

I each with two filters, followed by adder tree to generate feature
map

Figure: Hardware architecture of convolutional layer [8]
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Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
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I Loop based control because of large RAM consumption of
feature maps

I Finite state machine (FMS) is used to generate 64 feature
maps in 32 loops reusing block RAM

I Another FSM controls the first one for a full completion of 11
layers

Figure: Block diagram dataflow [8]
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Real-Time Road Segmentation Using LiDAR Data
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I Xilinx UltraScale XCKU115 FPGA at 350MHz

I Each 2D convolution takes about 18,000 clock cycles

I Results in 16.9 ms processing time for each scan

I LIDAR normally scans at 10Hz

I Real time processing requirement fulfilled and factor 30 speedup

I Intel Xeon CPU E5-2687Wv3 processing time takes 500ms for
same task

I Another own evaluation on K20 GPU results in 120ms run time
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Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
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I Training on KITTI road/lane detection dataset [3]

I Optimal performance (Fmax) and average precision (AP)

I Result: less processing time at comparable performance
including pre-processing, neural network, post-processing, and
visualization

Figure: Comparison with KITTI road/lane detection dataset [9]

5The previous section is based on [9]
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I FPGA indeed (can) increase processing speed

I Its high adaptivity, parallelism and efficiency brings advantages
over CPUs/MCUs especially on autonomous robot applications

I Other applications:
Multi-axis motion controller for robotic applications
Decentralized inverse optimal neural control
...

I FPGAs can be very expensive per piece

I Low abstraction level and not easy to program

I High Level Synthesis (use of High Level Languages) produces
overhead and cost performance
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Thanks for paying attention!

Questions?

– 38 / 60



Appendix
Motivation Basics Paper Conclusion References Appendix

Figure: Ford dataset [8]
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Figure: Kitti dataset [8]
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CNN repetitive structure:

I 12x convolutional layer and activation layer

I Conv. layer: 64 filters with each 5x5 kernel stride size 1 and
padding size 2

I Stride and padding make output size equal to input size

I Relu activation function for fast training

I Two drop out layers after 6th and 10th block in training to
accelerate convergence

I No pooling layers

I 11 conv. layers and 5x5 kernel because of resource and
performance tradeoff
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I Zero padding is applied to control size of feature maps and
reserve boundary information of input images

I Dual RAM port is designed for next stage convolution

I Padded zeros are stored in advance

I Control logic store each pixel in proper memory location

I Scanning circuit reads pixel by pixel

I HDL-64E LiDAR is used in KITTI road benchmark

I 64 scan channels and emits 1.3 million points per second.

I 2D convolution implemented in conjunction with a line buffer
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I Output is a 5x5 pixel window for multiplication with weight
matrix using 25 multipliers

I Highly pipelined adder tree computes the sum

I RELU activation implemented by comparator and multiplexer

Figure: System diagram [8]

– 43 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

...

Figure: Line buffer, 4 lines 5 register [9]
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...

Figure: Zero padding in RAM [9]
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...
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity binary_adder_tree is
6
7 port
8 (
9 a : in unsigned (7 downto 0);

10 b : in unsigned (7 downto 0);
11 c : in unsigned (7 downto 0);
12 d : in unsigned (7 downto 0);
13 e : in unsigned (7 downto 0);
14 clk : in std_logic;
15 result : out unsigned (7 downto 0)
16 );
17
18 end entity;
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...
19 architecture rtl of binary_adder_tree is
20
21 -- Declare registers to hold intermediate sums
22 signal sum1, sum2, sum3 : unsigned (7 downto 0);
23
24 begin
25
26 process (clk)
27 begin
28 if (rising_edge(clk)) then
29
30 -- Generate and store intermediate values in the pipeline
31 sum1 <= a + b;
32 sum2 <= c + d;
33 sum3 <= sum1 + sum2;
34
35 -- Generate and store the last value, the result
36 result <= sum3 + e;
37
38 end if;
39 end process;
40
41 end rtl;

Figure: Binary adder tree VHDL [7]
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...
19 library IEEE;
20 use IEEE.STD_LOGIC_1164.ALL;
21 use IEEE.NUMERIC_STD.ALL;
22
23 entity relu is
24 Generic (
25 WIDTH: natural
26 );
27
28 Port (
29 din: in std_logic_vector(WIDTH - 1 downto 0);
30 dout: out std_logic_vector(WIDTH - 1 downto 0)
31 );
32 end relu;
33
34 architecture rtl of relu is
35 begin
36
37 dout <= (others => '0') when din(WIDTH - 1) = '1' else din;
38
39 end rtl;

Figure: Rectified linear unit VHDL [5]
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...
19 library IEEE;
20 use IEEE.STD_LOGIC_1164.ALL;
21
22 entity relu_wrapper is
23 Port (
24 din: in std_logic_vector(9 downto 0);
25 dout: out std_logic_vector(9 downto 0)
26 );
27 end relu_wrapper;
28
29 architecture Structural of relu_wrapper is
30
31 begin
32
33 relu_inst : entity WORK.relu
34 generic map (
35 WIDTH => 10
36 )
37 port map (
38 din => din,
39 dout => dout
40 );
41
42 end Structural;
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Figure: Relu wrapper VHDL [5]
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Figure: Difference of MCU and MPU [14]

I MCU: Single chip computer, single threaded, bare metal
interface
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I CPU: Peripheral chips not integrated, multi threaded,
operating system, in this context: main processor of a PC

Conversion errors:
Fractional precision of fixed point configurations (angular values)
& (position values) and root-mean-squared error (RMSE) and
maximum error (Max E) induced by conversion

Figure: Errors in fixed point configurations [12]
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Design 2 of ALS:

I Balance communication and computation by migrating
interpolation for parameters

I Interpolate data and send increments to FPGA

I Increase of fixed point bits in total (31,28)

I (ρ,Θ) 64bits/ element and 18*64 bits for GPS/IMU data

I (ϕr ϕp ϕy)⇒ (∆ϕr ∆ϕp ∆ϕy)

I (Xac, Yac, Zac)⇒ (∆Xac, ∆Yac, ∆Zac)
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Figure: State machine with host signals (dashed lines = design 2) [12]

– 54 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Pseudocode design 2 [12]
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Figure: FPGA processing time: below 1ms [12]
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Video

DLR Crash Report [4]
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Figure: Circuit and symbol of D-FlipFlop [1]
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Figure: Shift register by FFs in series [2]
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Will LIDAR become cheaper?

"In the future, the automotive supplier Bosch will also rely on
so-called laser radar in the development of automated driving, and
is entering into the development of such sensors. The goal is to
make the technology suitable for mass production and thus
significantly cheaper than before, Bosch announced on
Thursday."[11]

"Only the parallel use of three sensor principles makes automated
driving as safe as possible, the company argues."[11]

– 60 / 60


	Motivation
	Basics
	Paper
	Fast Real-Time LIDAR Processing on FPGAs
	Real-Time Road Segmentation Using LiDAR Data Processing on an FPGA

	Conclusion
	References
	Appendix

