
MIN Faculty
Department of Informatics

Advantages of FPGA Based Robot Control
Compared to CPU and MCU Based Control

Methods

Nicolas Frick

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

January 13, 2020

– 1 / 60



Outline
Motivation Basics Paper Conclusion References Appendix

1. Motivation
2. Basics
3. Paper

Fast Real-Time LIDAR Processing on FPGAs

Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA

4. Conclusion
5. Appendix

– 2 / 60



Motivation
Motivation Basics Paper Conclusion References Appendix

I Robot control is dominated by CPUs1 and MCUs2

I A CPU offers high abstraction levels but lose performance

I Field Programmable Gate Array (FPGA) technology improves

I In special applications they outperform CPUs

I High performance computing by concurrent hardware

(a) FPGA architecture [10]

(b)

x86 processor [6]
(c)

ARM Cortex MCU [13]

1Central Processing Unit
2Microcontroller Unit

– 3 / 60



Motivation (cont.)
Motivation Basics Paper Conclusion References Appendix

I Goal: speeding up processing time

I Idea: intelligent behaviour can be determined by reactivity

I ... fast reaction results in more intelligent behaviour

I Example: time constraints in collision avoidance

Figure: [1]

– 4 / 60



Motivation (cont.)
Motivation Basics Paper Conclusion References Appendix

Video

DLR Crash Report [4]

– 5 / 60



Motivation (cont.)
Motivation Basics Paper Conclusion References Appendix

I Paper: ’Fast Real-Time LIDAR Processing on FPGAs’ [12] by
Shih et al.

I Speed up airborne LIDAR processing by multi-level parallelism

I Published: ERSA 2008 May 2014 (2008)

I Paper: ’Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA’ [9] by Lyu, Bai and Huang

I Convolutional Neural Networks (CNNs) on FPGAs

I Published: IEEE International Symposium on Circuits and
Systems 2018-May (2018)

– 6 / 60



FPGA
Motivation Basics Paper Conclusion References Appendix

I Integrated Circuits (ICs) with reconfigurable components

I Basic elements: memory cells, logical gates and flip flops

I Peripheral components: dedicated memory blocks, clock
generators, Digital Signal Processing (DSP) blocks ...

I Core functionality: Configurable Logic Blocks (CLBs) and
connection blocks

Figure: FPGA architecture [10]
– 7 / 60



FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Programming i.e. configuration by special software (IDEs3)

I Mapping of electronic circuit descriptions to CLBs

I Setting of a CLB by Look Up Tables (LUT)

I Efficient routing between components necessary (setting of
connection blocks)

Figure: FPGA simplified architecture [2]

3Integrated Development Environment
– 8 / 60



FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Programming for a computer: writing instructions for a CPU

I Sequential execution of the program

I Programming for an FPGA: writing a hardware description

I Use of Hardware Description Language (HDL)

I Hardware description is translated into configuration data

I Effectively creating circuits in hardware (concurrent)

– 9 / 60



FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

1 library ieee;
2 use ieee.std_logic_1164.all;
3
4 entity and_logic is
5 port
6 (
7 in_1 : in std_logic;
8 in_2 : in std_logic;
9 out_and : out std_logic

10 );
11 end and_logic;

12 architecture impl of and_logic is
13 begin
14 out_and <= in_1 and in_2;
15 end impl;

(a) VHDL ‘and’ logic [2]

Figure: Logical gate (and) [2]

3FPGA section is based on [2]
– 10 / 60



Fast Real-Time LIDAR Processing on FPGAs
Motivation Basics Paper Conclusion References Appendix

Introduction

LIDAR coordinates calculation

Hardware implementation

Results

– 11 / 60



Fast Real-Time LIDAR Processing on FPGAs
Motivation Basics Paper Conclusion References Appendix

I Terrain mapping by Airborne Laser Scanning (ALS)

I Provide high resolution position information from a remote
distance

I Multi-modal system: LIDAR, GPS4, IMU5

I Fast onboard processing in time constraint scenario

I Difficult to achieve by traditional embedded CPU solutions

I Micro-laser altimeter developed by NASA: pulse rate 10kHz,
10x10 detector generates 1 ∗ 106 return events / second

4Global Positioning System
5Inertial Measurement Unit

– 12 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

I Multi-level parallelism of FPGA is exploited

I Nearly 14x speedup obtained over software solution

I Different setups are investigated and compared

I Extension of the system is possible (pattern recognition, feature
extraction)

I Possible application: autonomous driving where resources are
rare and real-time computing is necessary

– 13 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

I Major components: pulsed laser, scanner and optics, receiver
and receiver electronics, position and navigation systems

I Receiver registers laser photons reflected from the terrain

I GPS provides better absolute position solution

I IMU updates aircraft attitude i.e. the roll, pitch and yaw angles

I Data fusion of GPS and IMU improves estimation of trajectory

Figure: LIDAR terrain mapping [12]
– 14 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

I Fundamental calculation:

Angles from IMU: roll ϕr, pitch ϕp, yaw ϕy

Position from GPS: Xac, Yac, Zac

LIDAR: range ρ, angle Θ

Return’s coordinates are obtained by:

1. Determine unit vector for each laser pulse using scan angle Θ

2. Align aircraft fixed vectors to earth fixed GPS coordinates

3. Apply generated rotation matrices to unit vector

4. Scale rotated unit vector by range value ρ

5. Translate the obtained range vector to GPS coordinate frame

– 15 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

I Resulting formula:
X

Y

Z

 =


ρ (CϕyCϕrSΘ− CϕySϕrCϕpCΘ− SϕySϕpCΘ) +Xac

ρ (SϕyCϕrSΘ− SϕySϕrCϕpCΘ− CϕySϕpCΘ) + Yac

ρ (−SϕrSΘ− CϕrCϕpCΘ) + Zac



where C and S abbreviate cosine and sine operations.

– 16 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

I Different update rate of parameters: multi rate

I Laser returns are independent of one another

I Parallel processing by buffering in FPGA

I One buffer captures 33,000 laser returns and angles plus IMU
angles and GPS position

Figure: Buffering of LIDAR input [12]
– 17 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

I Host-PC captures data from LIDAR

I Data transferred to FPGA from Host using Direct Memory
Accesss (DMA)

I Pipelining applies to data input

I LIDAR processing core on FPGA computes coordinates

I State machine governs data flow

I Parallel computation of (X,Y,Z) and angular values ϕ

– 18 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Dataflow of onboard LIDAR processing [12]

– 19 / 60



Fast Real-Time LIDAR Processing on FPGAs (cont.)
Motivation Basics Paper Conclusion References Appendix

I Xilinx Virtex2 Pro 50 FPGA with clock frequency 125MHz

I Processes 1s of data in below 1ms

I Cray XD1 (super-) computer with 6x two 2.4GHz AMD
Opteron processors, only one node used for LIDAR

I Software baseline computed from a C application executed on a
2.4 GHz AMD Opteron processor

Figure: [12]
5The previous section is based on [12]

– 20 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA
Motivation Basics Paper Conclusion References Appendix

Introduction

Convolutional neural network design

Hardware implementation

Results

– 21 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA
Motivation Basics Paper Conclusion References Appendix

I Convolutional Neural Network based road segmentation
algorithm (semantic segmentation)

I Provide drivable region area

I Real time LIDAR processing on FPGA in 16.9 ms each scan

I Obtain 3D geometry information of vehicle surroundings with
very high accuracy

I Quality of road markings and light conditions less important

Figure: Camera view and LIDAR points [9]
– 22 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Network: cascading blocks that contain a convolutional layer
and non-linear layer

I Multiplexing is applied on the processing blocks on the chip

I Goal: label the drivable region (free space)

I Input: LIDAR, GPS, IMU

I Pre-processing, neural network processing and post-processing

Figure: Input channel to NN [9]

– 23 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Preprocessing: arrange data points and project into a 3D blob
with MxN tensors and C channels

I Input blob: 64 scan rows x 256 columns (polar angles) x 16
feature channels

Figure: Input map to NN [9]
– 24 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Neural network processing by new network architecture

I Minimize memory by multiplexing blob memory

I Hidden layers use same structure

I All internal results can be stored in same memory space
directory

I No allocation or reshaping of the blob

Figure: CNN architecture [9]
– 25 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Post processing: NN output is projected back to targeted views
(camera and top view)

I Challenge: non-uniformly distributed points in targeted view
after projection

I Determine contour by projecting furthest points in each angle
Θ (each column of output) onto target view

I Draw a polyline along those points on all angles of target view

I Add a straight line to the bottom and the polyline becomes a
polygon

I Polygon is treated as contour of drivable area (segmentation
result)

– 26 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Drivable area on camera view and top view [9]
– 27 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Memory usage: 64 memories x 256k bits for intermediate
feature maps

I 3D convolution is broken into 64 parallel 2D convolutions

I each with two filters, followed by adder tree to generate feature
map

Figure: Hardware architecture of convolutional layer [8]
– 28 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Loop based control because of large RAM consumption of
feature maps

I Finite state machine (FMS) is used to generate 64 feature
maps in 32 loops reusing block RAM

I Another FSM controls the first one for a full completion of 11
layers

Figure: Block diagram dataflow [8]
– 29 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Xilinx UltraScale XCKU115 FPGA at 350MHz

I Each 2D convolution takes about 18,000 clock cycles

I Results in 16.9 ms processing time for each scan

I LIDAR normally scans at 10Hz

I Real time processing requirement fulfilled and factor 30 speedup

I Intel Xeon CPU E5-2687Wv3 processing time takes 500ms for
same task

I Another own evaluation on K20 GPU results in 120ms run time

– 30 / 60



Real-Time Road Segmentation Using LiDAR Data
Processing on an FPGA (cont.)
Motivation Basics Paper Conclusion References Appendix

I Training on KITTI road/lane detection dataset [3]

I Optimal performance (Fmax) and average precision (AP)

I Result: less processing time at comparable performance
including pre-processing, neural network, post-processing, and
visualization

Figure: Comparison with KITTI road/lane detection dataset [9]

5The previous section is based on [9]
– 31 / 60



Conclusion
Motivation Basics Paper Conclusion References Appendix

I FPGA indeed (can) increase processing speed

I Its high adaptivity, parallelism and efficiency brings advantages
over CPUs/MCUs especially on autonomous robot applications

I Other applications:
Multi-axis motion controller for robotic applications
Decentralized inverse optimal neural control
...

I FPGAs can be very expensive per piece

I Low abstraction level and not easy to program

I High Level Synthesis (use of High Level Languages) produces
overhead and cost performance

– 32 / 60



References
Motivation Basics Paper Conclusion References Appendix

[1] Electronics Tutorials. “D-type Flip Flop Counter or Delay
Flip-flop”. In: (2018), pp. 1–15. url:
https://www.electronics-
tutorials.ws/de/sequentielle/d-flipflop.html.

[2] Cord Elias. FPGAs für Maker. Heidelberg: dpunkt.verlag,
2017. isbn: 978-3-96088-030-1.

[3] Andreas Geiger et al. “The KITTI Vision Benchmark Suite”.
In: The KITTI Vision Benchmark Suite (2013), pp. 1–13.
url:
http://www.cvlibs.net/datasets/kitti/eval_road.
php%20http://www.cvlibs.net/datasets/kitti/eval_
object.php%0Ahttp://www.cvlibs.net/datasets/
kitti/eval_stereo_flow.php?benchmark=stereo.

– 33 / 60

https://www.electronics-tutorials.ws/de/sequentielle/d-flipflop.html
https://www.electronics-tutorials.ws/de/sequentielle/d-flipflop.html
http://www.cvlibs.net/datasets/kitti/eval_road.php%20http://www.cvlibs.net/datasets/kitti/eval_object.php%0Ahttp://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_road.php%20http://www.cvlibs.net/datasets/kitti/eval_object.php%0Ahttp://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_road.php%20http://www.cvlibs.net/datasets/kitti/eval_object.php%0Ahttp://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_road.php%20http://www.cvlibs.net/datasets/kitti/eval_object.php%0Ahttp://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo


References (cont.)
Motivation Basics Paper Conclusion References Appendix

[4] Sami Haddadin et al. Human-Robot Collision Study -
YouTube. url:
https://www.youtube.com/watch?v=R5Gx8jpwyQ0.

[5] Jakub Hrabovsky. jhrabovsky/cnn-fpga-rtl: The CNN
architecture elements implemented with RTL approach in
VHDL. url:
https://github.com/jhrabovsky/cnn-fpga-rtl.

[6] IGZ Software house. X86 Architecture. 2016. url:
https://www.slideshare.net/tousifirshad/x86-
architecture%20https://en.wikibooks.org/wiki/
X86_Assembly/X86_Architecture.

[7] Intel. VHDL: Binary Adder Tree. url:
https://www.intel.com/content/www/us/en/
programmable/support/support-resources/design-
examples/design-software/vhdl/vhd-binary-adder-
tree.html.

– 34 / 60

https://www.youtube.com/watch?v=R5Gx8jpwyQ0
https://github.com/jhrabovsky/cnn-fpga-rtl
https://www.slideshare.net/tousifirshad/x86-architecture%20https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
https://www.slideshare.net/tousifirshad/x86-architecture%20https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
https://www.slideshare.net/tousifirshad/x86-architecture%20https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/vhdl/vhd-binary-adder-tree.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/vhdl/vhd-binary-adder-tree.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/vhdl/vhd-binary-adder-tree.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/vhdl/vhd-binary-adder-tree.html


References (cont.)
Motivation Basics Paper Conclusion References Appendix

[8] Yecheng Lyu, Lin Bai, and Xinming Huang. “ChipNet:
Real-Time LiDAR Processing for Drivable Region
Segmentation on an FPGA”. In: IEEE Transactions on
Circuits and Systems I: Regular Papers 66.5 (2019),
pp. 1769–1779. issn: 15498328. doi:
10.1109/TCSI.2018.2881162.

[9] Yecheng Lyu, Lin Bai, and Xinming Huang. “Real-Time
Road Segmentation Using LiDAR Data Processing on an
FPGA”. In: Proceedings - IEEE International Symposium on
Circuits and Systems 2018-May (2018). issn: 02714310.
doi: 10.1109/ISCAS.2018.8351244.

[10] omutukuda. Plugin_Architecture_Presentation. url:
https:
//www.slideshare.net/omutukuda/presentation-
1993175.

– 35 / 60

https://doi.org/10.1109/TCSI.2018.2881162
https://doi.org/10.1109/ISCAS.2018.8351244
https://www.slideshare.net/omutukuda/presentation-1993175
https://www.slideshare.net/omutukuda/presentation-1993175
https://www.slideshare.net/omutukuda/presentation-1993175


References (cont.)
Motivation Basics Paper Conclusion References Appendix

[11] rei/dpa. Bosch startet Laserradar-Entwicklung für
autonomes Fahren - manager magazin. 2020. url:
https://www.manager-
magazin.de/unternehmen/autoindustrie/bosch-
startet-laserradar-entwicklung-fuer-autonomes-
fahren-a-1303361.html.

[12] K. Shih et al. “Fast real-time LIDAR processing on FPGAs”.
In: Proceedings of the 2008 International Conference on
Engineering of Reconfigurable Systems and Algorithms,
ERSA 2008 May 2014 (2008), pp. 231–237.

[13] The Kairos Initiative. KairosFocus: Capacity Focus, 51: The
Raspberry Pi in action, with side notes on Python and the
ARM microprocessor architecture. url: http:
//kairosfocus.blogspot.com/2012/06/capacity-
focus-51-raspberry-pi-in.html.

– 36 / 60

https://www.manager-magazin.de/unternehmen/autoindustrie/bosch-startet-laserradar-entwicklung-fuer-autonomes-fahren-a-1303361.html
https://www.manager-magazin.de/unternehmen/autoindustrie/bosch-startet-laserradar-entwicklung-fuer-autonomes-fahren-a-1303361.html
https://www.manager-magazin.de/unternehmen/autoindustrie/bosch-startet-laserradar-entwicklung-fuer-autonomes-fahren-a-1303361.html
https://www.manager-magazin.de/unternehmen/autoindustrie/bosch-startet-laserradar-entwicklung-fuer-autonomes-fahren-a-1303361.html
http://kairosfocus.blogspot.com/2012/06/capacity-focus-51-raspberry-pi-in.html
http://kairosfocus.blogspot.com/2012/06/capacity-focus-51-raspberry-pi-in.html
http://kairosfocus.blogspot.com/2012/06/capacity-focus-51-raspberry-pi-in.html


References (cont.)
Motivation Basics Paper Conclusion References Appendix

[14] Scott Thornton. Microcontrollers vs. Microprocessors:
What’s the difference? 2017. url: https:
//www.microcontrollertips.com/microcontrollers-
vs-microprocessors-whats-difference/%20http:
//blmrgnn.blogspot.com/2018/04/microcontrollers-
vs.html.

– 37 / 60

https://www.microcontrollertips.com/microcontrollers-vs-microprocessors-whats-difference/%20http://blmrgnn.blogspot.com/2018/04/microcontrollers-vs.html
https://www.microcontrollertips.com/microcontrollers-vs-microprocessors-whats-difference/%20http://blmrgnn.blogspot.com/2018/04/microcontrollers-vs.html
https://www.microcontrollertips.com/microcontrollers-vs-microprocessors-whats-difference/%20http://blmrgnn.blogspot.com/2018/04/microcontrollers-vs.html
https://www.microcontrollertips.com/microcontrollers-vs-microprocessors-whats-difference/%20http://blmrgnn.blogspot.com/2018/04/microcontrollers-vs.html
https://www.microcontrollertips.com/microcontrollers-vs-microprocessors-whats-difference/%20http://blmrgnn.blogspot.com/2018/04/microcontrollers-vs.html


Questions
Motivation Basics Paper Conclusion References Appendix

Thanks for paying attention!

Questions?

– 38 / 60



Appendix
Motivation Basics Paper Conclusion References Appendix

Figure: Ford dataset [8]

– 39 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Kitti dataset [8]

– 40 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

CNN repetitive structure:

I 12x convolutional layer and activation layer

I Conv. layer: 64 filters with each 5x5 kernel stride size 1 and
padding size 2

I Stride and padding make output size equal to input size

I Relu activation function for fast training

I Two drop out layers after 6th and 10th block in training to
accelerate convergence

I No pooling layers

I 11 conv. layers and 5x5 kernel because of resource and
performance tradeoff

– 41 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

I Zero padding is applied to control size of feature maps and
reserve boundary information of input images

I Dual RAM port is designed for next stage convolution

I Padded zeros are stored in advance

I Control logic store each pixel in proper memory location

I Scanning circuit reads pixel by pixel

I HDL-64E LiDAR is used in KITTI road benchmark

I 64 scan channels and emits 1.3 million points per second.

I 2D convolution implemented in conjunction with a line buffer

– 42 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

I Output is a 5x5 pixel window for multiplication with weight
matrix using 25 multipliers

I Highly pipelined adder tree computes the sum

I RELU activation implemented by comparator and multiplexer

Figure: System diagram [8]

– 43 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

...

Figure: Line buffer, 4 lines 5 register [9]

– 44 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

...

Figure: Zero padding in RAM [9]

– 45 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

...
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity binary_adder_tree is
6
7 port
8 (
9 a : in unsigned (7 downto 0);

10 b : in unsigned (7 downto 0);
11 c : in unsigned (7 downto 0);
12 d : in unsigned (7 downto 0);
13 e : in unsigned (7 downto 0);
14 clk : in std_logic;
15 result : out unsigned (7 downto 0)
16 );
17
18 end entity;

– 46 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

...
19 architecture rtl of binary_adder_tree is
20
21 -- Declare registers to hold intermediate sums
22 signal sum1, sum2, sum3 : unsigned (7 downto 0);
23
24 begin
25
26 process (clk)
27 begin
28 if (rising_edge(clk)) then
29
30 -- Generate and store intermediate values in the pipeline
31 sum1 <= a + b;
32 sum2 <= c + d;
33 sum3 <= sum1 + sum2;
34
35 -- Generate and store the last value, the result
36 result <= sum3 + e;
37
38 end if;
39 end process;
40
41 end rtl;

Figure: Binary adder tree VHDL [7]

– 47 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

...
19 library IEEE;
20 use IEEE.STD_LOGIC_1164.ALL;
21 use IEEE.NUMERIC_STD.ALL;
22
23 entity relu is
24 Generic (
25 WIDTH: natural
26 );
27
28 Port (
29 din: in std_logic_vector(WIDTH - 1 downto 0);
30 dout: out std_logic_vector(WIDTH - 1 downto 0)
31 );
32 end relu;
33
34 architecture rtl of relu is
35 begin
36
37 dout <= (others => '0') when din(WIDTH - 1) = '1' else din;
38
39 end rtl;

Figure: Rectified linear unit VHDL [5]

– 48 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

...
19 library IEEE;
20 use IEEE.STD_LOGIC_1164.ALL;
21
22 entity relu_wrapper is
23 Port (
24 din: in std_logic_vector(9 downto 0);
25 dout: out std_logic_vector(9 downto 0)
26 );
27 end relu_wrapper;
28
29 architecture Structural of relu_wrapper is
30
31 begin
32
33 relu_inst : entity WORK.relu
34 generic map (
35 WIDTH => 10
36 )
37 port map (
38 din => din,
39 dout => dout
40 );
41
42 end Structural;

– 49 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Relu wrapper VHDL [5]

– 50 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Difference of MCU and MPU [14]

I MCU: Single chip computer, single threaded, bare metal
interface

– 51 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

I CPU: Peripheral chips not integrated, multi threaded,
operating system, in this context: main processor of a PC

Conversion errors:
Fractional precision of fixed point configurations (angular values)
& (position values) and root-mean-squared error (RMSE) and
maximum error (Max E) induced by conversion

Figure: Errors in fixed point configurations [12]

– 52 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Design 2 of ALS:

I Balance communication and computation by migrating
interpolation for parameters

I Interpolate data and send increments to FPGA

I Increase of fixed point bits in total (31,28)

I (ρ,Θ) 64bits/ element and 18*64 bits for GPS/IMU data

I (ϕr ϕp ϕy)⇒ (∆ϕr ∆ϕp ∆ϕy)

I (Xac, Yac, Zac)⇒ (∆Xac, ∆Yac, ∆Zac)

– 53 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: State machine with host signals (dashed lines = design 2) [12]

– 54 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Pseudocode design 2 [12]

– 55 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: FPGA processing time: below 1ms [12]

– 56 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Video

DLR Crash Report [4]

– 57 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Circuit and symbol of D-FlipFlop [1]

– 58 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Figure: Shift register by FFs in series [2]

– 59 / 60



Appendix (cont.)
Motivation Basics Paper Conclusion References Appendix

Will LIDAR become cheaper?

"In the future, the automotive supplier Bosch will also rely on
so-called laser radar in the development of automated driving, and
is entering into the development of such sensors. The goal is to
make the technology suitable for mass production and thus
significantly cheaper than before, Bosch announced on
Thursday."[11]

"Only the parallel use of three sensor principles makes automated
driving as safe as possible, the company argues."[11]

– 60 / 60


	Motivation
	Basics
	Paper
	Fast Real-Time LIDAR Processing on FPGAs
	Real-Time Road Segmentation Using LiDAR Data Processing on an FPGA

	Conclusion
	References
	Appendix

