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Taken from [1]
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Motivation
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Potential of RL:

I Automatic learning of robotic tasks, directly from sensory input

Promising results:

I Superhuman performance on Atari games [2]
I AlphaGoZero becoming the greatest Go player [3]
I AlphaStart becoming better than 99.8% of all Star Craft 2

players [4]
I Real-world, simple robotic manipulation tasks (numerous

limitations) [5]
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Basics
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Markov Decision Process. Figure taken from [6]

RL in a nutshell:
I Learning to map actions to situations
I Trial-and-error search
I Maximize numerical reward
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Reinforcement Learning fundamentals
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

I Reward rt : Skalar
I State function st ∈ S: Vector of observations
I Action function at ∈ A: Vector of actions
I Policy π: Mapping function from states to actions
I Action-Value function Qπ(st , at): Expected reward for

state-action pair

Putting the deep in RL:

I How to deal with continuous spaces?
I Approximate (state and action) function
I Approximator has fewer, limited number of parameters
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On-policy versus off-policy learning
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

On-policy learning:

I Only one policy
I Exploitation versus exploration dilemma
I Optimize same policy that collects data
I Very data hungry

Off-policy learning:

I Employs multiple policies
I One collects data, other becomes final policy
I We can save and reuse past experiences
I More suitable for robotics
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Model-based versus model-free methods
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Model-based methods:

I Learn model of the environment
I Chose actions by planning on learned model
I "Think then act"
I Statistically efficient, but model often too complex to learn

Model-free methods:

I Directly learn Q-function by sampling from environment
I No planning possible
I Can produce same optimal policy as model-based methods
I More suitable for robotics
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4. Results and Discussion
5. Conclusion
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Data inefficiency
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

RL algorithms are notoriously data-hungry:

I Not a big problem in simulated settings
I Impractical amounts of training time in real-world
I Wear-and-tear on robot must be minimized
I Need for statistically efficient methods

Off-policy methods better suited, due to higher sample-efficiency
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Safe exploration
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

RL is trial-and-error search:

I Again no problem in simulation
I Randomly applying force to motors of an expansive robot is

problematic
I Could lead to destruction of robot
I Need for safety measures during exploration

Possible solutions: Limit maximum allowed velocity per joint,
position limits for joints [7]
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Sparse rewards
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Classic reward is binary measure:

I Robot might never complete complex tasks, thus never
observes reward

I No variance in reward function, no learning possible
I Need for manually designed reward function, reward

engineering
I Need for designated state representation, against the principal

of RL
I Not trivial problem, manually designed reward function often

exploited in an unforeseen manner
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Reality Gap
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Why not train in simulation?

I Simulations are still imperfect
I Many (small) dynamics of the environment remain uncaptured
I Policy will likely not generalize to real world
I Recent research field (automatic domain randomization)

Training in simulation more attractive, but often policy not directly
applicable in the real world
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Soft actor-critic algorithm
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Soft actor-critic by Haarnoja et al:

I Original version early 2018: Temperature hyperparameter [8]
I Refined version late 2018: Workaround for critical

hyperparameter [9]
I Developed in cooperation by UC Berkeley & Google Brain

I Off-policy, model-free, actor-critic method
I Key-idea: Exploit entropy of policy
I "Succeed at task while acting as random as possible" [9]
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Soft actor-critic algorithm
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Classical reinforcement learning objective:

I
∑

t E(st , at)∼ρπ [r(st , at)]

I Find π(at |st) maximizing sum of reward

SAC objective:

I π∗ = argmax
π

∑
t E(st ,at)∼ρπ [r(st , at) + αH(π(·|st))]

I Augment classical objective with entropy regularization H
I Problematic hyperparameter α

I Instead treat entropy as constraint, automatically update
during learning
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Advantages of using entropy
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Some advantages of the maximum entropy objective:

I Policy explores more widely
I Learn multiple modes of near-optimal behavior, more robust
I Significantly speeds up learning
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Dexterous hand manipulation
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

[9]

I 3-finger hand, 9 degrees of freedom
I Goal: Rotate valve into target position
I Learns directly from RGB images via CNN features
I Challenging due too complex hand and end-to-end perception
I 20 hours of real-world training
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Dexterous hand manipulation
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

[9]

Alternative mode:
I Use valve position directly
I 3 hours of real-world training
I Substantially faster than competition on same tasks (PPO, 7.4

hours [10])
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Dexterous hand manipulation
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

[11]
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Simulated Benchmark
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Comparison of SAC against other state of the art algorithms:

I DDPG, 2015: Off-policy, model-free, sample-efficient [12]
I TD3, 2018: Extension of DDPG [13]
I PPO, 2017: On-policy (relatively efficient), model-free [14]

Simpler and complex environments:
I Hopper-v2 (2D), Walker2D-v2 (2D), HalfCheetah-v2 (2D),

Ant-v2 (3D)

I Humanoid-v2 (3D), Humanoid (rllab, 3D)
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Simulated Benchmark
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Figure taken from [9]

I Comparable to baseline on simple tasks
I Exceeds baseline on challenging tasks
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Wrap-up & Conclusion
Motivation and basics Challenges in DRL Soft actor-critic algorithm Results and Discussion Conclusion

Soft actor-critic in a nutshell:

I Off-policy (higher sample efficiency)
I Model-free (almost necessity for real-world robotics)
I Training in simulation preferable, but still problematic
I Exploits entropy framework

Take-away:

I Can learn directly in real-world
I Can learn from raw sensory input (end-to-end)
I Entropy significantly speeds up learning
I Comparable to state of the art on simple tasks
I Exceeds state of the art on complex tasks
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Question time
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Thanks for your attention :)
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Value-based versus policy-based methods
References

So far, Value-based methods:

I Learn value-function (Q)
I Select actions based on learned value function
I Policies highly depend on value function

Alternatively, Policy-based methods:

I Learn parameterized policy
I No value function required, use total reward obtained from

each action
I Can deal with continuous state and actions spaces
I However, requires complete transitions (Monte-Carlo)
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Actor-critic methods
References

Why not use both?

I Learn policy (actor)
I Learn value-function (critic), approximating true value-function
I Basis for most recent RL algorithms

At each time-step (TD-approach):

I Adjust critic to fit value-function
I Update actor to new critic
I This is the classical generalized policy iteration (GPI) algorithm
I Not possible for purely policy-based methods ()
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Quadrupedal locomotion
References

Learning quadrupedal walking gaits:

I Learning directly in real-world
I Some reward-engineering
I Walking learned within 2 hours of training
I First example of DRL on quadrupedal locomotion without any

pretraining
I SAC policies are robust, generalizes well to unseen environment
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Dexterous hand manipulation
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