Fin Töter

Technical Aspects of Multimodal Systems

November 25, 2019

Gliederung (Agenda)

- 1 Motivation
- Offline MAPF
- 3 Online MAPF

What is Pathfinding?

Definition

Pathfinding is the ability for an artificial intelligence system to deduce the proper path around obstacles to reach a destination point. [6]

Games

Motivation

○●○○○
Use Cases

Figure: Pathfinding: Age of Empires [10]

Motivation

Navigation

Figure: Pathfinding: Navigation

Motivation ○○○○ Use Cases

Robotics

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Figure: Pathfinding: Robotics [2]

Motivation

Algorithms

- Depth First Search
- Breadth First Search
- Dijkstra
- A*
- Hierachical path finding
-

Introduction

Differences

- Multiple agents
- Planning of:
 - Multiple Paths
 - Free of collisions with other agents

Problem

A is set of k agents

$$\langle G, s, g \rangle$$
 where $G = (V, E)$ is an undirected Graph $s : [1, ..., k] \to V$ source positions $g : [1, ..., k] \to V$ target positions

- Agent $i \in A$ takes an action $a: V \to V$ such that a(v) = v'either wait or move
- Sequence of actions:

$$\pi_i[x] = a_x(a_{x-1}(\cdot \cdot \cdot a_1(s(i))))$$

Goal:

$$\forall i \in A \exists \pi_i[x] : \pi_i[x] = g(i)$$

Introduction

Agent Behavior at Target

- Stay at target
- Disappear at target

Assumptions

Objective Functions

- Makespan:
 - Maximum time for all agents to reach their target
- Sum of costs:
 - Sum of time steps by each agent
 - Stay at target needs definition
- . . .

Conflicts

Figure: Vertex Conflict [8]

Figure: Edge Conflict [8]

Assumptions

Conflicts (cont.)

Figure: Circle Conflict [8]

Figure: Following Conflict [8]

Assumptions

Conflicts (cont.)

Figure: Swap Conflict [8]

Current Research

- MAPF with large Agents [4]
- MAPF with kinematic constraints [1]
- $lue{}$ Non discrete time ightarrow weighted graph
- Anonymous MAPF [3]
- Colored MAPF [5]
- Online MAPF [9]

The Paper

- Title: Online Multi-Agent Pathfinding
- Author: Jiří Švancara from Charles University, Prague

Online MAPF

- Published: 2019-07-17
- Location: AAAI 2019 Honolulu, Hawaii

Definition

- Bring in a little twist:
 - Add a new set of triplets $\langle t_i, s_i, g_i \rangle$
 - \blacksquare t_i timestep in which agent i appears
- Awarness of new agent *i* only iff $t = t_i \rightarrow$ **online**
- New solutions every time new agent appears

Online MAPF

Online MAPF

Entering and Leaving

- New agent appears
 - Problems can occur
 - Vertex can be occupied in that timestep
 - Where was the agent before?
- Agent reaches goal
 - Stay at target
 - Leave environment
- Some kind of outer world is needed

Objective Functions

- Makespan
 - Online MAPF has no end
 - \blacksquare Makespan metric tends to ∞
- Sum of cost.
 - Works well if agents leave the environment or wait is ignored

Online MAPF 00000000000

Online MAPF

Optimal Solution

- $lue{}$ Two agents, one wants to go 1
 ightarrow 4 the other 3
 ightarrow 1
- Second agent arrives at t = 1

Figure: Optimal Solution

→ There is no completely optimal online MAPF Solver

Optimality

Snapshot Optimality

Definition

A snapshot optimal plan in an online MAPF setting is a plan for all agents to their goal that is optimal in terms of sum of costs assuming no new agent will appear in the future. [9]

- Simulation results approve this [9]
- Not optimal but tends to an overall low sum of cost

Replan Single / Grouped

Replan Single

Search for optimal plan for each new agent in serial

Online MAPE 000000000000

- Able to use SAPF algorithms
- Solvable in polynomial time
- \rightarrow Not snapshot optimal
 - Replan Single Grouped
 - Search for optimal plan for each new agent in parallel
- \rightarrow Not snapshot optimal

Online MAPF 00000000000

Replan All

- Search for optimal plan for each agent in parallel
- Not scalable in any way
- → Snapshot optimal iff MAPF algorithm is optimal

Online Independence Detection

Based on the Independence Detection Algorithm [7]

Online MAPF 000000000000

- "Agent do not interfere with each other"
- 1 Every agent is a group of size 1
- Plan for each group
- 3 Conflict \rightarrow merge groups of conflicting groups
- 4 Goto 2

Online MAPF 000000000000

Algorithms

Online Independence Detection (cont.)

- Problem with groupings in past timesteps
- Optimal paths based on conflicts can change
- Save groupings of the last timestep

Main Applications

 Autonomous driving in set environments (e.g. Hamburg City-Center)

Online MAPF 000000000000

- Intersection management
- Navigation
- Warehouse worker

Warehouse Video

Show Video and Video

References I

- [1] Wolfgang Hönig, T. K. Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian, and Sven Koenig. "Multi-Agent Path Finding with Kinematic Constraints". In: ICAPS. 2016.
- [2] Jorge Cham. R.O.B.O.T. Comics: Path Planning. [Online; accessed November 19, 2019]. 2009. URL: http: //www.willowgarage.com/blog/2009/09/04/robotcomics-path-planning.
- [3] S. Kloder and S. Hutchinson. "Path Planning for Permutation-Invariant Multi-Robot Formations". In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. 2005, pp. 1797–1802. DOI: 10.1109/ROBOT.2005.1570374.

References II

[4] Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, T. K. Satish Kumar, and Sven Koenig. "Multi-Agent Path Finding for Large Agents". In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019. Honolulu, Hawaii, USA, January 27 - February 1, 2019, 2019, pp. 7627-7634. DOI: 10.1609/aaai.v33i01.33017627. URL:

https://doi.org/10.1609/aaai.v33i01.33017627.

References III

- [5] Hang Ma and Sven Koenig. "Optimal Target Assignment and Path Finding for Teams of Agents". In: CoRR abs/1612.05693 (2016). arXiv: 1612.05693. URL: http://arxiv.org/abs/1612.05693.
- Scratch Wiki. Pathfinding. [Online; accessed November 19. [6] 2019]. 2019. URL: https://en.scratch-wiki.info/wiki/Pathfinding.
- [7] Trevor Standley. "Finding Optimal Solutions to Cooperative Pathfinding Problems.". In: vol. 1. Jan. 2010.

References IV

- [8] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski, and Roman Barták. "Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks". In: CoRR abs/1906.08291 (2019). arXiv: 1906.08291. URL: http://arxiv.org/abs/1906.08291.
- [9] Jirí Svancara, Marek VIk, Roni Stern, Dor Atzmon, and Roman Barták. "Online Multi-Agent Pathfinding". In: AAAI. 2019.

References V

[10] TheWargenflorgen. HD Pathfinding be like... [Online; accessed November 19, 2019]. 2017. URL: https://www.reddit.com/r/aoe2/comments/5n0eqv/hd_pathfinding_be_like/.