

Introduction to Robotics Summary

Lasse Einig, Jianwei Zhang

[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg

Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics

Technical Aspects of Multimodal Systems

July 12, 2018

J. Zhang, L. Einig 525 / 555

Summary

Introduction

Coordinate systems

Kinematic Equations

Robot Description

Inverse Kinematics for Manipulators

Differential motion with homogeneous transformations

Jacobian

Trajectory planning

Trajectory generation

Dynamics

Principles of Walking

Robot Control

Task-Level Programming and Trajectory Generation

 ummary Introduction to Robotics

Task-level Programming and Path Planning
Task-level Programming and Path Planning

Architectures of Sensor-based Intelligent Systems

Summary

Conclusion and Outlook

J. Zhang, L. Einig 527 / 555

Summary Introduction to Robotics

- Industrial Robots:
 - position control with PID controllers
 - ▶ featuring gravity compensation
- Research:
 - model-based control
 - hybrid force-position control
 - ▶ under-actuated control
 - backwards controllable (direct drive, artificial muscle) structure
 - external-sensor based control
 - → Intelligent Robots/Applied Sensor Technology

J. Zhang, L. Einig 528 / 555

Summary – Mechanical Structures of Robots

Summary Introduction to Robotics

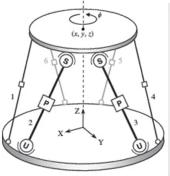
Things we talked about

- ► Open chain of rotational joints
- ► Hybrid joints for rotational and translational motion (SCARA, Stanford)
- ► Mobile robots, running machines

Things we did not talk about

- ► Closed chain, including Steward Mechanism [28, p. 279]
- Drive without motors

J. Zhang, L. Einig 529 / 555


Summary Introduction to Robotics

- ► Tool plate mounted to base plate with six translational joints (usually hydraulic) called leg
- ▶ Legs are connected to the plates with universal joints
- Mathematically 6-DOF configuration space without singularities
- ► Parallel mechanism provides high payload
 - Sequential manipulator applies forces and torques unequally

J. Zhang, L. Einig 530 / 555

The Stewart-Platform (cont.)

ummary Introduction to Robotics

J. Zhang, L. Einig 531 / 555

Summary

- Transformations
- ► Trajectory generation (e.g. linear Cartesian trajectory)
- Approximated representation of robot joints and objects
- ► Graph generation (V-Graph, T-Graph, ...)
- ► Search algorithms
- ► Further path planning algorithms
- Sensor fusion
- Vision
 - ► detection (static, dynamic)
 - reconstruction of position and orientation
- Action planning
- ► Sensor guided motion

J. Zhang, L. Einig 532 / 555

Summary

Introduction

- + Definition;
- Classification;
- + Basic components;
- + DOF

Coordinate Transformation

- + Manipulator-coordinates (Robot&Table);
- + Homogeneous transformations;
- + Rotation matrices, their inverse and their operations;
- + Transformation equations [2, 28, 3, 1]

Robot Description

- + DH-conventions and their applications (classic or modified);
- Universal Robot Description Format (URDF)

J. Zhang, L. Einig 533 / 555

Summary

Kinematics

- + Problems of forward and inverse kinematics;
- Algebraic and geometric solution of inverse kinematics;
- + Differential homogeneous transformations;
- + Jacobi-matrices;
- + Singularities [2, 28, 3, 1]

Trajectory Generation

- + Tasks and constraints;
- Polynomial solutions between two and four points;
- o Factors of an optimal motion;
- + Linear motion in cartesian space, realization and problems;
- + Concepts of B-Spline interpolation;
- B-Spline basis functions [28, 3, 1, B-Spline Literature]

J. Zhang, L. Einig 534 / 555

mmary Introduction to Robotic

Programming

- Task description, steps from the definition of frames to the implementation of programs;
- Advantages and concepts of RCCL [2, RCCL-Guide];
- Types of robot programming;
- offline-programming [28, 3]

Control

- Control systems of a PUMA robot;
- Linear and model-based control;
- PID controller;
- + Control concepts in Cartesian space [28, 3, 1]

Sensors

- Classification;
- + Intrinsic sensors, principle and application in control;
- extrinsic sensors [28, 3, 1]

J. Zhang, L. Einig 535 / 555

Dynamics

Summary

+ Problems:

- + Newton-Euler equations and Lagrangian Equations;
- Solution for arms with 1 or 2 joints, multiple joints as excercise;
- + Structure of a dynamical equation [28, 3, 1]

Collision avoidance

- + Configuration space;
- + Concepts of transformation to configuration space;
- Object representation;
- + Potential field method;
- + Probabilistic approaches

J. Zhang, L. Einig 536 / 555

Summary Introduction to Robotics

Control architectures

- Subsumption;
- CMAC;
- Hierarchical

Additional references: [29, 30, 31, 32]

J. Zhang, L. Einig 537 / 555

Conclusion and Outlook

Introduction

Coordinate systems

Kinematic Equations

Robot Description

Inverse Kinematics for Manipulators

Differential motion with homogeneous transformations

Jacobian

Trajectory planning

Trajectory generation

Dynamics

Principles of Walking

Robot Control

Task-Level Programming and Trajectory Generation

J. Zhang, L. Einig 538 / 555

Conclusion and Outlook

Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary

Conclusion and Outlook

J. Zhang, L. Einig 539 / 555

Conclusion and Outlook

Underlying robot-technique as described, additionally:

External Recognition

Reliable measurements of the environment;

Scene interpretation

Knowledge base

About environment;

Its own state;

Everyday knowledge comparable to a human

Autonomous planning

Action;

Coarse motion;

Grasping;

Sensor data acquisition

J. Zhang, L. Einig 540 / 555

Conclusion and Outlook Introduction to Robotics

Human friendly interface

Understanding of naturally spoken commands; Generation of robot actions; Solving of disambiguity in context-aware situations

Adaptive Control

Evolution instead of programming; Ability to learn

J. Zhang, L. Einig 541 / 555

Action Planning

Task-Specification;

State representation;

Task-decomposition;

Action-sequence generation

Motion Planning

Representation of the robot and the environment;

Calculation and representation of configuration space;

Search algorithms

Planning of Sensing

Which sensors;

Which time intervals;

Where to measure:

Internal and external parameters of the sensor

J. Zhang, L. Einig 542 / 555

Goal

Intelligent Control including the ability to adapt to different situations and to react to uncertainties

Control Architecture

Integration of perception, planning and actions

Tasks of sensor data processing

Position detection;

Proximity detection;

Slip detection;

Success confirmation;

Error detection;

Inspection

J. Zhang, L. Einig 543 / 555

Conclusion and Outlook

Introduction to Robotics

Applied sensors

Tactile sensors;

Vision systems;

Force-torque measurement systems;

Distance sensors

Strategies

calibrated based on absolute reference values; uncalibrated based on relative information

Types of perception

passive based on a certain sensor-actor configuration; active depending on the plan for sensing

J. Zhang, L. Einig 544 / 555

will be:

- dexterous
- smaller
- ► faster
- ► lightweight
- powerful
- ▶ intelligent
- ▶ easier to operate
- cheaper

J. Zhang, L. Einig 545 / 555

Conclusion and Outlook

Introduction to Robotics

Methods

Symbolical understanding of the environment; Integrated sensor-motor-coupling; Self-learning

Systems

Synergetic multi-sensor;

Agile mobility;

Dexterous manipulation capabilities

Technical

Sensor complexity similar to a human;

New drive types;

Nano-robots:

Multifinger hand;

Anthropomorphic robots;

Flying robots

J. Zhang, L. Einig 546 / 555

Continuing Education at University of Hamburg

Conclusion and Outlook

Introduction to Robotics

Intelligent Robots Project

Build a complex robotic system from the available hardware at TAMS. Current Hardware includes PR2, TASER, 2 KUKA lightweight arms, 2 Mitsubishi PA10-6C, UR5 Arm, 4 Turtlebots, Shadow Hand C6, Shadow Hand C5, Robotiq adaptive gripper, SCHUNK gripper, 2 Barret Hands...

Intelligent Robots/Applied Sensor Technology Lecture
Intrinsic and Extrinsic sensor technology and their application
for intelligent robotic systems.

Machine Learning Lecture

Machine learning techniques allow robots to learn from observation and experience

Neural Networks Lecture

Neural Networks allow robots to learn and offer new approaches to planning and control

 6 1 2 10 11

Introduction to Robotics

Image Processing I&II Lecture

Image processing is required for robots to observe the environment and recognize/classify/detect objects and humans

Knowledge Processing Lecture

The gained knowledge from observance and sensing has to be processed efficiently

Language Processing Lecture

How to extract knowledge and information from human speech

Real-Time Systems Lecture at TUHH

Robots have to process information and act in Real-Time environments

Fundamentals of Control Technology Lecture at TUHH

Control Technology is required for the technical control of robotic systems. Advanced Lecture with large prerequisites.

J. Zhang, L. Einig 548 / 555

Conclusion and Outlook

- K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence.
 McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
- [2] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators.

 Artificial Intelligence Series, MIT Press, 1981.
- [3] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.

 Always learning, Pearson Education, Limited, 2013.
- [4] J. F. Engelberger, *Robotics in service*. MIT Press, 1989.
- [5] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," *Comput. Aided Geom. Des.*, vol. 1, pp. 1–60, July 1984.

Conclusion and Outlook

- [6] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," *International Journal of Intelligent Systems*, vol. 13, no. 2-3, pp. 257–285, 1998.
- [7] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '96, (New York, NY, USA), pp. 325–334, ACM, 1996.
- [8] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung.
 PhD thesis, Bielefeld University, 2001.
- [9] J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421–427, 1979.

J. Zhang, L. Einig 550 / 555

Conclusion and Outlook Introduction to Robotics

- [10] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," *Artificial Intelligence*, vol. 37, no. 1, pp. 157–169, 1988.
- [11] J. Canny, *The Complexity of Robot Motion Planning*. MIT press, 1988.
- [12] T. Lozano-Pérez, J. L. Jones, P. A. O'Donnell, and E. Mazer, Handey: A Robot Task Planner. Cambridge, MA, USA: MIT Press, 1992.
- [13] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in *Adaptive and Learning Systems*, pp. 367–377, Springer, 1986.
- [14] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in *Robotics Research* (G. Giralt and G. Hirzinger, eds.), pp. 249–264, Springer London, 1996.

- [15] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in *Algorithmic Foundations of Robotics V*, pp. 43–57, Springer, 2004.
- [16] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," *Philosophical Transactions of the Royal* Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 79–107, 2007.
- [17] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14–23, Mar 1986.
- [18] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
- [19] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in *AAAI*, vol. 87, pp. 677–682, 1987.

J. Zhang, L. Einig 552 / 555

Conclusion and Outlook Introduction to Robotics

- [20] J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367–385. Heidelberg: Physica-Verlag HD, 2001.
- [21] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 157–174, 1997.
- [22] A. Meystel, "Nested hierarchical control," 1993.
- [23] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in *Machine Intelligence and Knowledge Engineering for Robotic Applications* (A. Wong and A. Pugh, eds.), vol. 33 of NATO ASI Series, pp. 221–234, Springer Berlin Heidelberg, 1987.
- [24] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in *Neural Networks, 1992. IJCNN., International Joint Conference on*, vol. 1, pp. 269–274 vol.1, Jun 1992.

J. Zhang, L. Einig 553 / 555

Conclusion and Outlook Introduction to Robotics

[25] R. C. Arkin and T. Balch, "Aura: principles and practice in review," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 175–189, 1997.

- [26] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," *ACM SIGART Bulletin*, vol. 2, no. 4, pp. 70–74, 1991.
- [27] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration. Master thesis, Universität Hamburg, 2015.
- [28] J. Craig, Introduction to Robotics: Mechanics & Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.
- [29] H. Siegert and S. Bocionek, *Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter.*Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.

- [30] R. Schilling, *Fundamentals of robotics: analysis and control*. Prentice Hall, 1990.
- [31] T. Yoshikawa, *Foundations of Robotics: Analysis and Control*. Cambridge, MA, USA: MIT Press, 1990.
- [32] M. Spong, *Robot Dynamics And Control*. Wiley India Pvt. Limited, 2008.

J. Zhang, L. Einig 555 / 555