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Basics of Task-Level Programming
Task-Level Programming and Trajectory Generation Introduction to Robotics

Goal enable task-specification with symbolically described states
where planning of necessary movement is up to the robot system

Example driving commands should only require the target position
instead of specifying how to move precisely

Common problem of task-level programming
Collision avoidance
A general approach – geometric trajectory planning:
to plan collision-free motion for the known models of manipulators
and obstacles in the workspace.
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Object-Representation
of robots, the environment and objects
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

I Approximating methods
I bounding box
I convex hull
I spherical and ellipse models

I Constructive Solid Geometry (CSG)
I Boundary Representation (BREP)
I Sweep Representation

I Spatial data structures
I Grid-Model (Spatial Occupancy Enumeration)
I Hierarchical Representation: (quadtree, octree)
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CSG Representation
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

I Method to model bodies
I Direct modeling
I Design of complex surfaces
I Combination of basic shapes using the boolean operators

union difference intersection
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CSG Representation (cont.)
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

I CSG-Tree
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Boundary Representation
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

I Method to model bodies
I Indirect modeling
I Surface /Volume model
I Vertice-Edge-Surfaces

Edge-# V-#1 V-#2
1 1 2
2 2 3
3 1 3
4 1 4
5 2 4
6 3 4

V-# x y z
1 2 -2 0
2 -2 2 0
3 2 2 4
4 -2 -2 4

Surface-# Edge order
1 1–2–3
2 3–6–4
3 2–5–6
4 1–4–5
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Sweep Representation
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

I method to model
bodies

I models in 2.5D
I intuitive
I quadratic, cubic

polynomials

A 2D-shape
B extrusion path
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Sweep Representation (cont.)
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

Simple path

Twisted path

Shape modification
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Sweep Representation (cont.)
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics
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Grid-Model (Spatial Occupancy Enumeration)
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

I Volume model in virtual space
I Enclosed hull
I Voxel based
I Unambiguous definition from inside and

outside
I Easy check for collisions between

objects
I Representation using CSG or BREP
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Grid-Model (Spatial Occupancy Enumeration) (cont.)
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics
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Quadtree Representation
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics

I 2D modeling
I Taken over from DB-applications
I Surface is partitioned into 4 parts
I Indexing of created surfaces
I Level of partitioning depends on the density of the object
I Octree is the 3D-equivalent
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Quadtree Representation (cont.)
Task-Level Programming and Trajectory Generation - Object Representation Introduction to Robotics
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a material block
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Piano Mover Problem
Task-Level Programming and Trajectory Generation - Motivation of Path Planning Introduction to Robotics
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Puzzle solving
Task-Level Programming and Trajectory Generation - Motivation of Path Planning Introduction to Robotics
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Assembly Strategies
Task-Level Programming and Trajectory Generation - Motivation of Path Planning Introduction to Robotics

assembly parts

physical assembled plane simulated assembled plane
Learning of Assembly Strategies in a distributed Multi-Robot-Environment [8]
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Assembly Strategies (cont.)
Task-Level Programming and Trajectory Generation - Motivation of Path Planning Introduction to Robotics

assembly start during assembly
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Robot Programming
Task-Level Programming and Trajectory Generation - Motivation of Path Planning Introduction to Robotics
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Positioning of a Gripper
Task-Level Programming and Trajectory Generation - Motivation of Path Planning Introduction to Robotics
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Motion Planning
Task-Level Programming and Trajectory Generation - Motivation of Path Planning Introduction to Robotics

Tasks comprised:
I Geometric paths
I Trajectories

I position, velocity and acceleration functions over time
I Instruction order for sensor-based motion
Goals comprised:
I Motion to goal position without colliding
I Autonomous assembly of an aggregate
I Spatial recognition
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Configuration of an Artifact
Task-Level Programming and Trajectory Generation - Configuration of an Artifact Introduction to Robotics

Artifact
A virtual or real body, that can change its place and form over
time.

A configuration of an artifact is a set of independent parameters,
which define the position of all its points in a reference frame.
I Can be expressed as a geometrical state-vector
I Number of parameter for the specification of the configuration

is equal to the degrees of freedom
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Configurations of a Rigid Body
Task-Level Programming and Trajectory Generation - Configuration of an Artifact Introduction to Robotics

Configuration of an object
I 2D: (x , y , θ)
I 3D: (x , y , z , α, β, γ)
I Plane: (longitude, latitude, altitude, roll, pitch, yaw)
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Configurations of a Multi-joint Manipulator
Task-Level Programming and Trajectory Generation - Configuration of an Artifact Introduction to Robotics
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Configurations and Paths of a Human Body
Task-Level Programming and Trajectory Generation - Configuration of an Artifact Introduction to Robotics

Path
A steady curve, connecting two configurations

τ : s ∈ [0, 1], τ(s) ∈ configuration space
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Definition
Basic path problem
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

Generalized motion problem
"Given a number m of statical obstacles and an artifact with
d degrees of freedom, the task of geometrical path planning
is to determine a path between two configurations without
collisions."

A complete path-planner shall always deliver a valid plan if one
exists, otherwise it should notify about the non-existence of a path.
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Input and Output
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

Known are:
I Completely a priori modeled geometry of the artifact and

the obstacles
I Kinematics of the artifact (a rigid body or a body with

alterable shape)
I Start and goal configuration
To determine:
I Sequence of steady transformations of collision-free

configurations of the artifact from the start to the goal
configuration
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Visibility Graph
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

The Visibility Graph (V-Graph) is constructed by linking the
visible corner points of the obstacles (visible: line does not
intersect obstacle).

S

G

Complexity: O(m2), m is the no. of obstacle polygon vertices
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Tangent Graph
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

The Tangent Graph (T-Graph) was introduced as a subgraph of
the V-Graph. It can be proven, that the shortest route between the
start and goal is a subset of the T-graph.

S

G

Complexity: O(m2)
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Voronoi Diagram
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

Construction complexity: O(m logm)
Search complexity: O(m)
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Heuristical Search
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

I A∗-algorithm is used to find the least-cost path
I Search a path from the initial node s to (one of) the goal

node(s) z
I A heuristic cost function f is used, which assigns a value to

every route from the initial to an arbitrary node q
I This value is used to estimate the complete costs from the

initial node to the goal node (passing node q)
I The estimation function f can be defined as an addition of two

functions g and h
I g describes the known cost from the initial node to node q
I h estimates the cost of the shortest route from q to the goal

node z
I If h is chosen the way that the actual costs are not

over-estimated, the search algorithm is called A∗
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Heuristical Search (cont.)
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

I It is guaranteed, that the shortest existing route can be found
with the A∗-algorithm

I In order to find not only the shortest, but also the smoothest
route, the costs of a route contain also a factor for direction
changes. g and h are defined such that
I g = e(s, q) + wf · cf (s, q)
I h = e(q, z) + wf · c∗

f (q, z)
I e(x , y) is the euclidean distance from x to y
I wf is a weight factor for the smoothness of the route
I c(x , y) is the measure of curvature of the route from x to y

I ∗ this value has to be estimated
I All possible route candidates from s to q are inserted into an

open list
I The route candidate with the minimal f -value is moved from

the open list to the closed list
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Heuristical Search (cont.)
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

I This closed list route candidate is then expanded to all
reachable neighbor-nodes and the new f function is evaluated.

I This is repeated until the goal-node is is expanded
I a route has been found
I there is no route from s to z if the open list is empty
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A* path finding
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics
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Boundaries of Path Planning Algorithms
Task-Level Programming and Trajectory Generation - Geometrical Path Planning Introduction to Robotics

First lower boundary
PSPACE-hard, i.e. at least as complex as an NP-problem, in the
worst case an exponential computing time for every algorithm to
solve this problem [9]

First upper boundary
Double exponential time-complexity with the DOF d [10]

Second upper boundary
Single exponential time-complexity using silhouette-method [11]
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