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Motivation
Introduction Related Work Approach Evaluation Conclusion

I goalposts important for soccer
I localization
I shooting to goal
I avoiding goalkeeper

I deep learning
I FCNNs have been shown to work for ball detection
I rules restricting other sensors
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Conventional Approach
Introduction Related Work Approach Evaluation Conclusion

I currently used approach works based on field boundary
I obstacles block way of field boundary
I mostly white obstacle is classified as goalpost
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Example of Conventional Approach
Introduction Related Work Approach Evaluation Conclusion

The conventional approach relying on the detection of the field
boundary to find dents in it and then color detection to find
goalposts.
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Conventional Approach - False Positives
Introduction Related Work Approach Evaluation Conclusion

The conventional approach sometimes detects far too many
false positives.
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Conventional Approach - False Negatives
Introduction Related Work Approach Evaluation Conclusion

The conventional approach also has the problem of detecting
too many false negatives.
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Computing Platform
Introduction Related Work Approach Evaluation Conclusion

I Nvidia Jetson TX2 1

I 256-core NVIDIA PascalTM GPU
I 1.3 TOPs
I Dual core and Quad core CPU
I 8 GB Ram

I NVIDIA TITAN X Pascal 2
I used for training
I 3584 NVIDIA CUDA Cores
I 11 TFLOPS
I 12 GB of GPU memory

I Logitech C910 camera 3

I 1080p
I USB 2.0
I our team:

I static color balance
I dynamic exposure

1https://developer.nvidia.com/embedded/develop/hardware
2https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
3https://support.logitech.com/en_us/product/hd-pro-webcam-c910/specs

J. Hagge – Goalpost Detection 8 / 32



Convolutional Neural Networks
Introduction Related Work Approach Evaluation Conclusion

4 Image of a conventional neural network

4http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks
Introduction Related Work Approach Evaluation Conclusion

5 Example of the layers a convolutional neural network

5http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks - Filter Example
Introduction Related Work Approach Evaluation Conclusion

[KSH12] An example of what filter can look like. This example
is from the AlexNet, which was trained for detection of signifi-
cantly more classes.

I A filter is a matrix multiplication of learned weights and pixel
values.
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Convolutional Neural Networks - Max Pooling
Introduction Related Work Approach Evaluation Conclusion

6 A max pool layer is used to down sample the image.

6http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks - Example Output Image
Introduction Related Work Approach Evaluation Conclusion

[SBB18] An example image of what the FCNN output could
look like for a ball. Black (no activation) where no object was
detected and brighter the more activation there is per pixel.
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Transformer
Introduction Related Work Approach Evaluation Conclusion

I Transformer is needed to get coordinates from image space to
Cartesian space

[Gü19] The transformer works by knowing the motor positions
and the position of the ground and inferring where an object
lies by calculating at which angle an object would be where in
the image space.
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YOLO
Introduction Related Work Approach Evaluation Conclusion

I used by multiple teams in RoboCup Soccer domain

[RDGF16] The YOLO approach works by splitting the image in
to a grid, simultaneously detecting possible bounding boxes and
calculating class probabilities and finally combining them to get
the final detection
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YOLO in the RoboCup Domain
Introduction Related Work Approach Evaluation Conclusion

I bounding box approach is less accurate
I less accurate transformations is bad for localization

[Pie19] The bounding boxes in this example are accurate, but
still less precise than what an FCNN could achieve with being
pixel precise
J. Hagge – Goalpost Detection 16 / 32



YOLO in the RoboCup Domain
Introduction Related Work Approach Evaluation Conclusion

[RAS+17] Team Barelangs approach tries to detect the whole
goal. This shows the inaccurate bounding boxes generated by
the YOLO architecture. This would significantly harm the pre-
cision of the localization
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Ball Architecture
Introduction Related Work Approach Evaluation Conclusion

[SBB18] The architecture currently used by the Hamburg Bit-
Bots robots for ball detection which was developed by Speck et
al. The approach presented here builds upon this architecture
to also find goalposts.
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Ball Architecture Example Image
Introduction Related Work Approach Evaluation Conclusion

[SBB18] Example output generated by the neural network from
Speck et al. to detect the ball.

J. Hagge – Goalpost Detection 19 / 32



Data Set
Introduction Related Work Approach Evaluation Conclusion

I human labeled bounding boxes or polygons
I custom export formats possible → YAML

Ball labeled by a human7

7https://imagetagger.bit-bots.de/
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Data Set
Introduction Related Work Approach Evaluation Conclusion

I thousands of labels created for the purpose of this bachelor
thesis

Goalpost labeled by a human8

8https://imagetagger.bit-bots.de/
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Single Channel - full goalpost
Introduction Related Work Approach Evaluation Conclusion
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Single Channel - Bottom Part
Introduction Related Work Approach Evaluation Conclusion

I bottom part of label
I depending on post processing beneficial for transforming into

cartesian space
I detection is not good enough to detect e.g. distance from height
I other parts of goalpost irrelevant

I runtime difference would be high
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Single Channel - Bottom Part
Introduction Related Work Approach Evaluation Conclusion

Approach of using only the bottom part is able to detect the
goalpost.
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Architecture for two Channels
Introduction Related Work Approach Evaluation Conclusion

[SBB18] Architecture difference is just another filter in the last
layer and thus also 2 heatmaps as a result. (Image of Speck et
al. architecture for reference)
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Two Channel
Introduction Related Work Approach Evaluation Conclusion

I first convolutional layers can use the same filters → less
runtime needed

I splitting using bottom part of label

The top left image shows the activation for the ball. The bottom
right image the activation for the goalpost. The ball is detected,
while the goalpost layer has almost no activation.
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Two Channel with full Goalpost Label
Introduction Related Work Approach Evaluation Conclusion
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Ball Detection Example
Introduction Related Work Approach Evaluation Conclusion
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Goalpost Detection Example
Introduction Related Work Approach Evaluation Conclusion
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Evaluation
Introduction Related Work Approach Evaluation Conclusion

I bottom part of goalpost single layer:
I IOU of 0.4523

I two channel with full goalpost:
I IOU for ball: 0.6578
I IOU for goalpost: 0.4032
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Live Demo Video
Introduction Related Work Approach Evaluation Conclusion

Image from the output of the neural network next to the input
image.
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Conclusion
Introduction Related Work Approach Evaluation Conclusion

I the architecture works for detection of two classes
I results worse than for single class detection, but useful due to

run time trade off
I could be improved with more data
I bottom part of label approach necessary for field of view of

robot
I Future Work:

I detection of more than two classes (e.g. Field markings and
Robots)
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