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What I did till now
Previous Work Deep Reinforcement Learning Bipedal Locomotion

I Creating new humanoid platform (Wolfgang)
I Basic open-loop walking
I Parameter learning
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Wolfgang - Components
Previous Work - Wolfgang Platform Deep Reinforcement Learning Bipedal Locomotion

I Successor of a successor of Nimbro-OP
I Material: carbon, steel, aluminium, PLA
I Joints: 20 DOF using Dynamixels

I Spring protectors for shoulder joints
I Sensors

I Logitech C910 / (Basler camera)
I (2x) IMU
I Foot Pressure sensors

I Computers
I Intel NUC i5
I Nvidia Jetson TX2
I Odroid XU-4

I Electronics
I Network switch
I Powerboard
I DXL Board
I Speaker, (small Display)
I 2 Buttons, servo power switch

Marc Bestmann 4 / 54



Current Structure
Previous Work - Wolfgang Platform Deep Reinforcement Learning Bipedal Locomotion
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Goal Structure
Previous Work - Wolfgang Platform Deep Reinforcement Learning Bipedal Locomotion

Marc Bestmann 6 / 54



Performance
Previous Work - Wolfgang Platform Deep Reinforcement Learning Bipedal Locomotion

I Camera
I Current: USB2 10Hz 640*480
I Next version: GigE 30Hz 3MP

I Servos
I Reading: position, velocity, torque
I Control: position, velocity, current, current based position

I Foot pressure sensors
I 4 strain gauges per feet
I Max force: 40 kg
I Resolution: ~24bit

I Dynamixel bus read/write all
I Current: 2Mbaud, ~250Hz
I Next version: 3 x 4.5Mbaud, ~1kHz
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Foot Pressure Sensors
Previous Work - Wolfgang Platform Deep Reinforcement Learning Bipedal Locomotion
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Foot Pressure Sensors
Previous Work - Wolfgang Platform Deep Reinforcement Learning Bipedal Locomotion

Marc Bestmann 9 / 54



Outline
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion
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QuinticWalk
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion

I Based on work from Rhoban
I Holonomic
I Fixed phase
I Open loop
I Direct parameter based

I Less magical
I Generalization to any bipedal

robot
I Successfully used on two

different robot types
I Control like a wheeled robot

cmd_vel

next foot pose
from support foot 

next foot poses
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time delta

next trunk pose
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QuinticWalk Engine - Next Step
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion
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QuinticWalk Engine - Parameters
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion
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QuinticWalk Engine - Splines
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion

I Given
I start and end pose of flying foot
I start and end pose of trunk
I key values in between

I Searched
I flying foot pose at any point of time
I trunk pose at any point of time

I Solution
I spline interpolation
I 6 splines for foot
I 6 splines for trunk
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Quintic Splines
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion

I define a set of spline points with
I time (x)
I position (y)
I velocity (y’)
I acceleration (y”)

I fit polynoms of degree 5 between two points
I get values at time point t by solving corresponding polynom
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QuinticWalk Engine
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion
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QuinticWalk Engine
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion
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QuinticWalk Engine
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion
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Parameter GUI
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion
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QuinticWalk Video
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion

Video from RoboCup 2018 in Montreal
Push recovery video
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QuinticWalk Engine - Advanced Features
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion

I Performance can be increased by introducing overshoot
I For x and y direction
I defined by a overshoot_ratio and overshoot_phase

I Small kicks can easily be introduced
I Adding conditional spline points
I kick_length for additional movement in x
I kick_phase for the timing

Marc Bestmann 21 / 54



QuinticWalk Engine - Falling
Previous Work - Quintic Walk Deep Reinforcement Learning Bipedal Locomotion

I Robot still falls sometimes
I Very stable sagital
I Problems in lateral plane
I Robot builds up lateral errors

I Simple solutions
I Pausing when unstable

I Gives the robot time to lose lateral energy
I (previous) IMU not precise/fast enough
I Try with new foot sensors

I Phase reset when foot touches ground
I Reduces build up
I Good results for Rhoban

I Using balance goal of BioIK
I Closing loop by computing CoP
I Choosing trunk pose based on this

I Finding perfect set of parameters
I See next section
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Outline
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion
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Parameter Search
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion

I Idea: Find optimal parameters automatically
I Problem: a lot of possible combinations
I Assumption: Small changes on a parameter have small effect
I Still a lot of parameter combinations
I Idea: Limit parameter values
I Information needed

I Correlation between parameter value and fitness
I Correlation between multiple parameters and fitness

I Getting this by random sampling the parameter space
I Many samples needed -> not possible with real hardware
I Running single simulation also to slow

Marc Bestmann 24 / 54



Parameter Search - Simulation Setup
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion

I Start master node
I Start n worker nodes on any computers
I For worker in workers until number of evaluations reached

I Get set of parameters from master using a service
I Evaluate the performance of these parameters
I Return the performance for this set of parameters to the master

I Results are written in a .csv file

train_master

train_worker_0

train_worker_1RequestParameters.srv

SubmittFitness.srv

train_worker_n

gz_server_0

gz_server_1

gz_server_nwatch_worker gz_client
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Simulation Run
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion

I Reset robot
I Set robot joints to start position
I Set robot to start pose

I Do forward walk
I Measure distance
I Reset robot
I Do sideward walk
I Measure distance
I Reset robot
I Measure angle
I Compute fitness by adding distances and angle
I Break with fitness 0 if robot falls
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Results
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion

I 36958 sets tested
I 1237 fitness > 0
I 269 fitness > 4
I 55 fitness > 6
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Results - Higher Zero
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion
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Results - Higher Zero
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion

Marc Bestmann 29 / 54



Results - Higher Six
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion
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Results - Higher Six
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion
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Results
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion
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Results
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion
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Results - Parameter Pairwise Correlation
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion
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Conclusion
Previous Work - Parameter Learning Deep Reinforcement Learning Bipedal Locomotion

I Problem to easy
I Introduce disturbances
I More different speeds
I Control from move_base

I Best parameters somewhat realistic
I Most parameters independent

I Important to know which are not
I Improvements on algorithm for more independence

I Dependency between parameter, cmd_vel and fitness
I Use another learning approach
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Outline
Previous Work - Side Projects Deep Reinforcement Learning Bipedal Locomotion
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Side Projects
Previous Work - Side Projects Deep Reinforcement Learning Bipedal Locomotion

I Besides the walking, I did some side projects
I I will only present them shortly
I Ask me if you want more information
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Dynamic Stack Decider (DSD)
Previous Work - Side Projects Deep Reinforcement Learning Bipedal Locomotion

I Lightweight behavior framework
I Flixble like a behavior tree and simple like a FSM
I Based on building a stack of decisions and actions
I Concept developed in the RoboCup team in 2013

I Used for body and head behavior
I Previously called stack machine

I Improved version this year together with Martin Poppinga
I Was also used for the Tiago bartender challenge
I Paper for IROS workshop was rejected due to topic change

I New paper will follow
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Dynamixel ros_control
Previous Work - Side Projects Deep Reinforcement Learning Bipedal Locomotion

I Allows controlling of the Dynamixel servos via ros_control
I Same interface on robot as on Gazebo simulator
I Usage of standard controllers possible
I Implementation of current based position control
I Usage of sync read/write for optimal bus usage
I Generic implementation for any robot
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Hardware Control Manager V2.0
Previous Work - Side Projects Deep Reinforcement Learning Bipedal Locomotion

I Four functions
I Regulate access to joint control
I Implement basic (reflex like) behavior
I Provide semantic status of the robot
I Handle hardware problems

I Enabling easier writing of high level behavior
I Allows control of a humanoid robot like a wheeled one
I First version was done during my masters thesis
I Replaced old state machine with DSD
I Added further functionalities

I Recognition of kidnapped robot
I Better hardware error handling

I Paper in planning
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Supervised Projects
Previous Work - Side Projects Deep Reinforcement Learning Bipedal Locomotion

I ImageTagger
I Online platform for collaborative image labeling
I Paper at RoboCup Symposium 2018, second author

I FCNN real-time ball localization
I Improvement on previous approach
I More data due to ImageTagger platform
I Paper at RoboCup Symposium 2018, second author

I Particle filter world model
I Filtering on relative FCNN heatmap
I Submitted to IEEE MFI 2019, second author

I Speech recognition in the RoboCup domain
I Bachelor thesis by Thomas Walther together with SP
I Giving commands to a player in natural language
I Training Kaldi model on specific trainer
I Increasing robustness against noise
I Not real time capable
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Outline
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion
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Deep RL - Basic Idea
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

https://en.wikipedia.org/wiki/Reinforcement_learning
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Current Baseline in Walking
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I Good results in simulation
I RoboSchool Flagrunn
I RoboSchool Atlas
I DeepMimic

I Not many applications on actual robots
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Current RL Frameworks
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I OpenAI gym interface
I reset, step, render

I Environments
I (Atari)
I (Classic Control)
I (Box2D)
I Mujoco
I RoboSchool (Bullet)
I PyBullet
I openai_ros (the Construct)

I Baselines
I OpenAI baselines
I INRIA Flowers stable-baselines
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Available Baseline Algorithms
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I A2C
I ACER
I ACKTR
I DDPG
I DQN
I GAIL
I HER
I PPO
I TRPO
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Deep RL on Wolfgang
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I How can we apply simulator results on Wolfgang?
I Input

I Command velocity
I IMU
I Feet pressure sensors
I Phase
I Current feet poses / velocities
I Joint efforts

I Output
I Goal poses of feet

I Some parts of the robot are not actuated
I Head moves independently to look at the world
I Arms should stay in a safe position
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Parts Needed
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I Robot X
I Robot model X
I Training environment (X)

I Roboschool URDF
I Maybe training in multiple simulators

I Learn algorithm (X)
I PPO2 from stable-baselines

I Policy network
I Simple fully connected should work
I Central Pattern Generators could improve results

I Reward function
I Next slide

I Real world training/evaluation
I HCM to track falling and stand up again
I Use april tag + camera to get odometry error
I Give commands so that robot does not run into walls
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Reward Function
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I Very crucial to shape what the robot is learning
I Goals

I Stability > speed
I Usability in real world
I Odometry error not to big

I Use "mocap" data from QuinticWalk
I Better transfer than human mocap data
I Robot has only 20DOF
I Similar reward term as in DeepMimic

I Punishing term for large error in odometry
I Punish falling a lot
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Learning Overview
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

cmd_vel & phase

QuinticWalkPolicy

sensor input

Reward Function

goalsgoals

Simulation

PPO
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From Simulation to Reality
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I Main challenge: get it to work in real world
I Evaluate difference between simulator and real robot (BA)
I Initial state randomization
I Physic parameter randomization
I Learning in different simulators
I Introducing disturbances
I Adding noise to simulated sensor values
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Future Work
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

I Stand up
I Small kick while walking
I Omnidirectional kick engine
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Questions
Deep Reinforcement Learning Deep Reinforcement Learning Bipedal Locomotion

Questions?
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