Intelligent Prosthesis
From Sensor Data to Motion Generation

Irina Barykina

12. December 2016
1. Motivation
2. Sensors
 - Types
 - Myoelectric sensor
3. EMG control systems
 - System overview
 - Preprocessing of data
 - Non-pattern recognition systems
 - Classification with ANN
 - Limitations
4. Feedback
5. Nice video
6. References
Motivation

- Limb prosthesis for amputees rehabilitation (approx. 10 millions of amputees over the world in 2008 [4]).
- Limb orthosis for rehabilitation of people with a violation of musculoskeletal system.
- Exoskeleton systems for assisting people in daily routines.

[www.touchbionics.com]
Motivation

- Limb prosthesis for amputees rehabilitation (approx. 10 millions of amputees over the world in 2008 [4]).
- Limb orthosis for rehabilitation of people with a violation of musculoskeletal system.
- Exoskeleton systems for assisting people in daily routines.

[www.touchbionics.com]
Motivation

- Limb prosthesis for amputees rehabilitation (approx. 10 millions of amputees over the world in 2008 [4]).
- Limb orthosis for rehabilitation of people with a violation of musculoskeletal system.
- Exoskeleton systems for assisting people in daily routines.

[www.touchbionics.com]
Sensors

Type of Input Signals

- Electromyography (EMG)
- Mechanomyogram (MMG) or sound myogram
- Electroencephalography (EEG)
- Electrooculography (EOG)
- Electrocorticogram (EcoG)

[www.science.education.nih.gov]
Sensors
Type of Input Signals

- Electromyography (EMG)
- Mechanomyogram (MMG) or sound myogram
 - Electroencephalography (EEG)
 - Electrooculography (EOG)
 - Electrocorticogram (EcoG)

[www.science.education.nih.gov]
Sensors
Type of Input Signals

- Electromyography (EMG)
- Mechanomyogram (MMG) or sound myogram
- Electroencephalography (EEG)
- Electrooculography (EOG)
- Electrocorticogram (EcoG)

[www.science.education.nih.gov]
Sensors
Type of Input Signals

- Electromyography (EMG)
- Mechanomyogram (MMG) or sound myogram
- Electroencephalography (EEG)
- Electrococulography (EOG)
- Electrocorticogram (EcoG)

[www.science.education.nih.gov]
Sensors
Type of Input Signals

- Electromyography (EMG)
- Mechanomyogram (MMG) or sound myogram
- Electroencephalography (EEG)
- Electrooculography (EOG)
- Electrocorticogram (EcoG)

[www.science.education.nih.gov]
Sensors
Myoelectric Sensor

Motivation Sensors EMG control systems Feedback Nice video References

[MyoWare Muscle Sensor DevKit, www.sparkfun.com/products/13772]

[www.mananatomy.com/basic-anatomy]
Data Segmentation

Constraints

Definition

Segment is a time slot for acquiring myoelectric data considered for feature extraction. [2]

Time constraints:

- Real time constraint: segment length + processing time ≤ 300ms
- Lower bound: 32ms

Signal state constraints:

- Transient state
- Steady state (preferred)
Data Segmentation: Windowing

- Adjacent Windowing
- Overlapped Windowing
- Continuous Segmentation (plus majority voting technique)
EMG control system
Majority Voting

- Post-processing technique.
- Smoothes class decisions.
- Class at point $t = \text{most frequent class at points } [t-m; t+m]$.

$$m \times T_{\text{process}} \leq T_{\text{delay}}, \text{ where}$$

$T_{\text{process}} = \text{time consumed during feature extraction,}$

projection and classification;

$T_{\text{delay}} = \text{acceptable response time of the control system.}$
T. Sono et al. [7] upper limb prosthesis with simple threshold control.

- Biceps deliver flexion, triceps - extension.
- Threshold $T = 20\%$ of max contraction.
 - Open if closing EMG $< T$ && opening EMG $> T$
 - Close if closing EMG $> T$ && opening EMG $< T$
 - Otherwise \Rightarrow do nothing (no need to keep muscles contracted).
T. Sono et al. [7] upper limb prosthesis with simple threshold control.

- Biceps deliver flexion, triceps - extension.
- Threshold $T = 20\%$ of max contraction.
- **Open** if closing EMG $< T$ && opening EMG $> T$
- **Close** if closing EMG $> T$ && opening EMG $< T$
- Otherwise => **do nothing** (no need to keep muscles contracted).
Grasping object with 2 fingers (upper line) and 1 finger (bottom line). [7]
Red lines = mean values with applied low-pass filter. Red dashed lines = onset of signal.

[3]
Vectorization of data in experiment of M. Gandolla et al. [3]
Calibration procedure in experiment of M. Gandolla et al. [3]
EMG control system
Limitations

- No tactile feedback. Visual feedback is not enough to provide subconscious control.
- No individual control on some of the muscles (true for innate limbs as well).
- Necessity to concentrate and physically react during operation.
EMG control system

Limitations

▸ No tactile feedback. Visual feedback is not enough to provide subconscious control.

▸ No individual control on some of the muscles (true for innate limbs as well).

▸ Necessity to concentrate and physically react during operation.
No tactile feedback. Visual feedback is not enough to provide subconscious control.

No individual control on some of the muscles (true for innate limbs as well).

Necessity to concentrate and physically react during operation.
Experiment of Hernandez A. Alejandro et al. [1].

- Uses neural plasticity to associate an unique event with new stimuli.
- Substitutes tactile feedback with an electrical stimulation in healthy arm.

- Results: brain shows activation of the sensory area related to the amputated arm.

[1]
Conclusion

- Patients are able to return to simple functional activities of daily life.
- Enhancement with biofeedback helps to prevent phantom pain and neuro reconstruction.
- Unfortunately, contemporary solutions are still inconvenient.
Patients are able to return to simple functional activities of daily life.

Enhancement with biofeedback helps to prevent phantom pain and neuro reconstruction.

Unfortunately, contemporary solutions are still inconvenient.
Patients are able to return to simple functional activities of daily life.

Enhancement with biofeedback helps to prevent phantom pain and neuro reconstruction.

Unfortunately, contemporary solutions are still inconvenient.
Nice Video

Upper limb prosthesis from John Hopkins University, Applied Physics Laboratory: https://www.youtube.com/watch?v=-0srXvOQlu0

[www.bloomberg.com]

