
Scheduling with Shared Resources

Unmesh D. Bordoloi

Resources

What is a resource?

I a data structure used by a task during its execution

I variable ...

I an area of main memory

I set of registers of peripheral device

A shared resource

I is used by more than one task

I does not allow simultaneous access

I requires mutual exclusion

Critical Section

Critical section
is the piece of code belonging to a task that is
executing under mutual exclusion constraints

Mutual exclusion is enforced by semaphores

I wait(s): Task is blocked if s=0

I signal(s): Task can access the resource if s=1

Critical Sections

States of a Task

I A task waiting for an exclusive resource is blocked on that
resource

I All tasks blocked on the same resource are kept in a queue
with the semaphore of that resource

I When a running tasks executes a wait primitive on a locked
semaphore, it enters a wait state

I When a task currently using resource executes a signal, the
semaphore is released

I When a tasks leaves the waiting state because the semaphore
has been released it goes to the ready state

I The CPU is then assigned to highest priority tasks amongst
the tasks in the ready state

States

RUN

WAITING

READY

scheduling

preemption

terminate
activation

signal free
resource

wait on busy
resource

Shared Resources

Critical sections, states of the task ... we discussed them as
necessary backgrounds. What we really want to discuss now is:
(i) Shared resources can cause problems in scheduling
and (ii) How to fix them?

Blocking

a1 t1 t2

J1

J2

normal section

critical section

blocked

1. J1 has higher priority than J2

2. Uniprocessor preemptive environment

Priority Inversion

I Simply considering the blocking delay is not enough

I We must also avoid priority inversion

Priority Inversion

0 1 2 3 4 5 6 7

J
1

J
2

J
3

I J1 > J2 > J3

I [3, 6] is the priority inversion period

I J1 has to wait for the execution of J2 and critical section of J3

Need for Resource Access Protocols

I Multiple tasks are running

I in uniprocessor preemptive environment

I with shared resources

I which may lead to priority inversion!

I Need for resource access protocols!

Avoiding Inversion

Naive protocol

I Prohibit preemption

I Works well only if critical section are short

I Might block higher priority processes that do not even use any
shared resources

I Hence, such a naive protocol is not enough. What we need
follows...

Resource access protocols

Under static priorities

I Priority inheritance

I Priority ceiling

Under dynamic priorities

I Stack resource

Resource access protocols

Under static priorities

I Priority inheritance

I Priority ceiling

Under dynamic priorities

I Stack resource

Priority Inheritance Protocol

Tasks have nominal and active priorities

I Nominal priority : assigned by the scheduling algorithm

I Active priority : assigned by the priority inheritance protocol
dynamically to avoid priority inversion

Priority Inheritance Protocol

Intuition

I When Ji blocks higher priority tasks, then its active priority is
set to the highest of the priorities of the tasks it blocks

I Ji inherits - temporarily - the highest priority of the blocked
tasks

I Thus, medium priority tasks which do no share resources with
Ji cannot preempt Ji and cannot prolong the blocking of the
higher priority tasks

Priority Inheritance Protocol - Example1

J1

J2

J

0 1 2 3 4 5 6 7

J3

Priority Inheritance Protocol

The working of the protocol

I Jobs are scheduled based on their active priorities

I If Ji tries to enter a critical section and the corresponding
resource is being held by Jj then Ji is blocked; it is said to be
blocked by Jj .

I When a job is blocked on a semaphore, it transmits its active
priority to the job that holds the semaphore; in general, a task
inherits the highest priority of the jobs blocked by it.

Priority Inheritance Protocol - Example1

J1

J2

J

0 1 2 3 4 5 6 7

J3

P2

P1

P3

Sh i h h i h i i l l f h l i i k 3Showing the change in the priority level of the lowest priority task J3

Priority Inheritance Protocol

The working of the protocol

When Jk exits a critical section, it unlocks the semaphore; the job
with the highest priority that is blocked on the semaphore, if any,
is awakened. The priority of Jk is set to the highest priority of the
job it is currently blocking. If none, its priority is set to its nominal
one.

Priority Inheritance Protocol - Example1

J1

J2

J

0 1 2 3 4 5 6 7

J3

P2

P1

P3

Sh i h h i h i i l l f h l i i k 3Showing the change in the priority level of the lowest priority task J3

Priority Inheritance Protocol - Example2
Nested Critical Sections

T1

T2

Normal Execution Critical Section

a

b

a b b aT3 b

P1

P2

P3

t1 t2 t3 t4 t5 t6

Priority Inheritance Protocol

Advantages

I Under the priority inheritance protocol, a job J can be blocked
for at most the duration of min (n,m) critical sections, where
n is the number of lower-priority jobs that could block J and
m is the number of distinct semaphores that can be used to
block J.

I Proof is omitted but it is important to note that the blocking
time may be bounded.

I Unlike the naive protocol, the blocking time can never be as
long as the WCET of a lower priority task.

Priority Inheritance Protocol

Disadvantages

I Chained Blocking: J can get blocked on n critical sections
held by n distinct lower priority jobs.

I Deadlocks:

Priority Inheritance Protocol
Chained Blocking

While Priority Inheritance Protocol bounds the priority inversion
phenomenon, the blocking duration can still be substantial due to
chain blocking. In this figure, when attempting to use its
resources, J1 is blocked for the duration of two critical sections,
once to wait J3 to release Sa and then to wait J2 to release Sb.
This is called chain blocking.

Priority Inheritance Protocol
Deadlock

The Priority Inheritance Protocol cannot prevent deadlocks.

Priority Ceiling

Extension of Priority Inheritance Protocol to handle chained
blocking and deadlocks

Intuition

I Avoid multiple blocking i.e.,

I Once a task enters a critical section, it can not be blocked by
lower priority tasks till its completion

I This addresses the evil twins

Priority Ceiling

Extension of Priority Inheritance Protocol to handle chained
blocking and deadlocks

Intuition

I A task is not allowed to enter a critical section if there are
already locked semaphores which could block it eventually

I Hence, once a task enters a critical section, it can not be
blocked by lower priority tasks till its completion

I This is achieved by assigning priority ceiling ...

Priority Ceiling

Protocol

I Each semaphore Sk is assigned a priority ceiling C (Sk). It is
the priority of the highest priority task that can lock Sk . This
is a static value.

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

C(S0=?) C(S1=?) C(S2=?)

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

C(S0=P1) C(S1=P1) C(S2=P2)

Priority Ceiling

Protocol

I Suppose J is currently running and it wants to lock the
semaphore Sk . J is allowed to lock Sk only if the priority of J
is strictly higher than the priority ceiling C (S∗) of the
semaphore S∗ where:

I S∗ is the semaphore with the highest priority ceiling among all
the semaphores which are currently locked by jobs other than J

I In this case, J is said to blocked by the semaphore S∗ (and the
job currently holding S∗)

I When J gets blocked by S∗ then the priority of J is transmitted
to the job J∗ that currently holds S∗

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

t2: T2 can not lock S2. Currently T3 is holding S2 and C(S2) =
P2 and the current priority of T2 is also P2

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

t5 : T1 can not lock S0. Currently T3 is holding S2 and S1 and
C(S1) = T1 and the current priority of T1 is also P1. The
(inherited) priority of T3 is now P1

Priority Ceiling

Protocol

I When J∗ leaves a critical section guarded by S∗ then it
unlocks S∗ and the highest priority job, if any, which is
blocked by S∗ is awakened

I The priority of J∗ is set to the highest priority of the job that
is blocked by some semaphore that J∗ is still holding. If none,
the priority of J∗ is set to be its nominal one

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

t6 : T3 unlocks S1. It awakens T1. But T3s (inherited) priority is
now only P2 while P1 > C (S2) = P2. So T1 preempts T3 and
runs to completion

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

t7 : T3 resumes execution with priority P2

Priority Ceiling Protocol
Example

S2 S2 S1 S2

T1

T3

T2

Normal Execution Critical Section

S0

S2

P1

P2

P3

t1 t2 t3 t4 t5 t6 t7 t8 t9

S1

S1

t8 : T3 unlocks S2 and goes back to its nominal priority P3. So
T2 preempts T1 and runs to completion

Schedulability Analysis for PIP and PCP

∀i , 1 ≤ i ≤ n
Σi
k=1Ck/Tk + Bi/Ti ≤ i(21/i − 1)

Bi is the maximum blocking times according to the respective
protocols.

Resource access protocols

Under static priorities

I Priority inheritance

I Priority ceiling

Under dynamic priorities

I Stack resource

Stack Resource Policy

Extends PCP

I SRP supports dynamic priority scheduling

I PCP blocks a task at the time it makes the resource request,
while SRP blocks task at the time it attempts to preempt. We
will revisit this issue later, once we go through SRP

Stack Resource Policy

We need to understand three definitions: Preemption level,
Resource ceiling and System Ceiling

Preemption Level

I is a static value

I π ∝ 1/Di i.e., tasks with larger deadlines have lower
preemption level. Intuition: they can be easily preempted

Stack Resource Policy: Example

Preemption levels based on relative

deadlines – NOT dynamic

Stack Resource Policy

Resource ceiling

of a resource is the highest preemption level from amongst of all
tasks that may access that resource. Note: (i) this is associated
with each resource (ii) this is static

System ceiling

is the highest resource ceiling level from amongst of resources that
are currently blocked. Note: (i) this is not associated with each
resource but with the system (ii) this is a dynamic parameter that
can change every time a resource is accessed or released

Stack Resource Policy: Example

Preemption levels based on relative

deadlines – NOT dynamic

What is the resource ceiling for the red resource? for the yellow
resource?

Stack Resource Policy: Example

System ceiling based on currently blocked

resources - dynamic

Resource ceiling for the red resource is 3. For the yellow resource,
it is 2. Based on this, we can see how the system ceiling varies
dynamically

Stack Resource Policy

A task can preempt another task if

I it has the highest priority

I and its preemption level is higher than the system ceiling

Stack Resource Policy: Example

Task	 T3	 is	 not	 preempted	 by	 T2	
even	 though	 it	 does	 not	 share	 the	
Red	 resource.	 Why?	

Stack Resource Policy

Intuition

I When a job needs a resource that is not available, it is
blocked at the time it attempts to preempt, rather than later.
(Think - preemption levels!)

I To prevent multiple priority inversions, a job is not allowed to
start until the resource currently available are sufficient to
meet the maximum requirement of every job that could
preempt it. (Think - system ceilings)

Stack Resource Policy vs. Priority Ceiling

SRP is an extension of the PCP.
Let us look at an example to see the main difference

Stack Resource Policy vs. Priority Ceiling

Stack Resource Policy vs. Priority Ceiling

SRP reduces preemptions compared to PCP.

Stack Resource Policy

Why is it called Stack Resource Policy?

Hint: A job cannot be blocked by jobs with lower premption levels
- they can resume only when the job completes. Hence, if there are
tasks on the same preemption level, they can never occupy stack
space on the same time. Higher the number of tasks on the same
preemption level, larger the stack space saving!

Schedulability Analysis for SRP

∀i , 1 ≤ i ≤ n
Σi
k=1Ck/Tk + Bi/Ti ≤ 1

Bi is the maximum blocking time suffered.

	Preliminaries
	Priority Inversion
	Static Priority
	Priority Inheritance Protocol
	Priority Ceiling

	Dynamic Priority
	Slack Resource Policy

