
The Priority Ceiling Protocol
L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols: An Approach to
Real-Time Synchronization, IEEE Transactions on Computers, Vol. 39, No. 9, 1990

Restrictions on how we can lock (Wait, EnterMonitor) and
unlock (Signal, LeaveMonitor) resources:

• a task must release all resources between invocations

• the computation time that a task i needs while holding
semaphore s is bounded. csi,s = the time length of the
critical section for task i holding semaphore s

• a task may only lock semaphores from a fixed set of
semaphores known a priory. uses(i) = the set of
semaphores that may be used by task i

13



The protocol:

• the ceiling of a semaphore, ceil(s), is the priority of the
highest priority task that uses the semaphore

• notation: pri(i) is the priority of task i

• At run-time:

– if a task i wants to lock a semaphore s, it can only do
so if pri(i) is strictly higher than the ceilings of all
semaphores currently locked by other tasks

– if not, task i will be blocked (task i is said to be blocked
on the semaphore, S∗, with the highest priority ceiling
of all semaphores currently locked by other jobs and
task i is said to be blocked by the task that holds S∗)

– when task i is blocked on S∗, the task currently holding
S∗ inherits the priority of task i

14



Properties:

• deadlock free

• a given task i is delayed at most once by a lower priority
task

• the delay is a function of the time taken to execute the
critical section

15



Deadlock free

Example:

Task name T Priority

A 50 10

B 500 9

Task A Task B

lock(s1) lock(s2)

lock(s2) lock(s1)

... ...

unlock(s1) unlock(s1)

unlock(s2) unlock(s1)

ceil(s1) = 10, ceil(s2) = 10

16



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t0: B starts executing

17



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t1: B attempts to lock s2. It succeeds since no lock is held
by another task.

18



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t2: A preempts B

19



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t3: A tries to lock s1. A fails since A’s priority (10) is not
strictly higher than the ceiling of s2 (10) that is held by B

• A is blocked by B

• A is blocked on s2

• The priority of B is raised to 10.
20



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t4: B attempts to lock s1. B succeeds since there are no
locks held by any other tasks.

21



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t5: B unlocks s1

22



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t6: B unlocks s2

• The priority of B is lowered to its assigned priority (9)

• A preempts B, attempts to lock s1 and succeeds

23



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t7: A attempts to lock s2. Succeeds

24



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t8: A unlocks s2

25



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t9: A unlocks s1

26



Example:

Task name T Priority

A 50 10

B 500 9

C 3000 8

Task A Task B Task C

lock(s1) lock(s2) lock(s3)

.. .. ..

unlock(s1) lock(s3) lock(s2)

.. .. ..

unlock(s3) unlock(s2)

.. ..

unlock(s2) unlock(s3)

ceil(s1) = 10, ceil(s2) = ceil(s3) = 9

27



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t0: C starts execution and then locks s3

28



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t1: B preempts C

29



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t2: B tries to lock s2. B fails (the priority of B is not strictly
higher than the ceiling of s3 that is held by C) and blocks
on s3 (B is blocked by C). C inherits the priority of B.

30



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t3: A preempts C. Later is tries to lock s1 and succeeds
(the priority of A is higher than the ceiling of s3).

31



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t4: A completes. C resumes and later tries to lock s2 and
succeeds (it is C itself that holds s3).

32



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t5: C unlocks s2

33



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t6: C unlocks s3, and gets back its basic priority. B pre-
empts C, tries to lock s2 and succeeds. Then B locks s3,
unlocks s3 and unlocks s2

34



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t7: B completes and C is resumed.

35



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t8: C completes

36



• A is never blocked

• B is blocked by C during the intervals [t2, t3] and [t4, t6].
However, B is blocked for no more than the duration
of one time critical section of the lower priority task C
even though the actual blocking occurs over disjoint time
intervals

37



General properties:

• with ordinary priority inheritance, a task i can be blocked
for at most the duration of min(n,m) critical sections,
where n is the number of lower priority tasks that could
block i and m is the number of semaphores that can be
used to block i

• with the priority ceiling inheritance, a task i can be blocked
for at most the duration of one longest critical section

• sometimes priority ceiling introduces unnecessary blocking
but the worst-case blocking delay is much less than for
ordinary priority inheritance

38



The Immediate Inheritance Protocol

• when a task obtains a lock the priority of the task is
immediately raised to the ceiling of the lock

• the same worst-case timing behavior as the priority ceiling
protocol (also known as the Priority Ceiling Emulation
Protocol and as the Priority Protect Protocol)

• easy to implement

• on a single-processor system it is not necessary to have
any queues of blocked tasks for the locks (semaphores,
monitors) – tasks waiting to acquire the locks will have
lower priority than the task holding the lock and can,
therefore be queued in ReadyQueue.

39



.

Priority Inheritance

Priority inheritance is a common, but not mandatory, feature of
most Java implementations.

The Real-Time Java Specification requires that the priority
inheritance protocol is implemented by default. The priority
ceiling protocol is optional.

40


