

Machine Learning in Robotics 64-450 Integrated Seminar Intelligent Robotics

Oke Martensen

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

9. June 2016

Outline

1. Machine Learning

Basics ML in Robotics

2. Deep Learning

DL in a Nutshell Deep Learning in Robotics

3. Examples for DL in Robotics

End-to-End Training of Deep Visuomotor Policies Hand-Eye Coordinated Grasping with Deep Learning

Motivation

Machine Learning in Robotics

Why Machine Learning?

Optimization is concerned with **mathematical problems** which are mathematically well-defined thus have verifiable solutions.

Machine Learning is

- concerned with engineering problems (often not well-defined)
- about building mathematical models

ML algorithms can be seen as being composed of:

- 1. representation
- 2. evaluation
- 3. optimization

Machine Learning Types

Machine Learning

Important Notions

Inductive bias: prior assumptions about the task at hand No-free-lunch theorem: there is no algorithm superior for all tasks

Robot Learning Problem

Again, in contrast to optimization (e.g. inverse kinematics).

• solve subtasks in advance e.g. via computer vision \Rightarrow states

explore, learn a policy through experience (RL)

Robot Learning Challenges

high-dimensional spaces scarce real-world data high variability / noise high-level targets many distinct tasks

https://www.youtube.com/watch?v=g0TaYhjpOfo

. . .

MIN Faculty Department of Informatics

Machine Learning in Robotics

Machine Learning in Robotics More Relevant ML Types

Combinations: Behavior Cloning Apprenticeship Learn.

Reinforcement Learn.

Sutton and Barto (1998)

Problems with RL:

limited data, dimensionality, few parameters, ...

Ideas:

- initialize learning process with data of a successful execution
- interim policy evaluation by user

Deep Learning - DL in a Nutshell

Machine Learning in Robotics

Deep Learning in a Nutshell Nothing much new actually.

mostly deep neural networks (> 1 hidden layers)

plethora of old and newer **methods for tweaking**: dropout, batch normalization, data augmentation, ...

large improvements in various domains: computer vision, speech recognition, game-playing, ...

Deep Learning - DL in a Nutshell

MIN Faculty Department of Informatics

Machine Learning in Robotics

Deep Learning in a Nutshell Characteristics

Deep Learning Illustration

Convolutional Neural Network (CNN/ConvNet)

Bezák et al. (2014)

Robot Learning Standard Robotic Learning vs. Deep Learning Approach

Subtasks solved with domain-specific approaches:

vs.

Largely domain-agnostic Deep Learning pipeline:

Examples for DL in Robotics - End-to-End Training of Deep Visuomotor Policies

Machine Learning in Robotics

End-to-End Training of Deep Visuomotor Policies Levine et al. (2015)

- map image pixels & joint angles to motor torques
- guided policy search:
 - transforms policy search into SL
 - alternating between trajectory and policy optimization
- full torque control of 7-DoF robotic arms

Levine et al. (2016)

Levine et al. (2015)

Machine Learning in Robotics

End-to-End Training of Deep Visuomotor Policies Visuomotor Policy Architecture

 \blacktriangleright ~92k parameters, 7 layers

Examples for DL in Robotics - End-to-End Training of Deep Visuomotor Policies

Examples for DL in Robotics - End-to-End Training of Deep Visuomotor Policies

Machine Learning in Robotics

End-to-End Training of Deep Visuomotor Policies Results

covered vision leads to estimated manipulation and subsequent correction attempts \rightarrow reliance on visual feedback

smaller changes will be adjusted for; bigger ones cause problems

recovery attempts after perturbations

Finn (2015)

Examples for DL in Robotics - Hand-Eye Coordinated Grasping with Deep Learning

Machine Learning in Robotics

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection Levine et al. (2016)

use grasp success prediction network with continuous servoing mechanism for continuous manipulator control

trained on >800k grasp attempts from 14 distinct robots

Levine et al. (2016)

Examples for DL in Robotics - Hand-Eye Coordinated Grasping with Deep Learning

Machine Learning in Robotics

Learning Hand-Eye Coordination for Robotic Grasping Architecture of CNN Grasp Predictor

Examples for DL in Robotics - Hand-Eye Coordinated Grasping with Deep Learning

Machine Learning in Robotics

Learning Hand-Eye Coordination for Robotic Grasping Results

Pastor (2016c,a,b)

failure reduction from 34% to 18% corrections after mistakes recovery after perturbations/changes

Conclusion

Problems for DL/ML in robotics:

- data sparsity
- high dimensionality/variability
- some generalizability but limited (related to the previous points)

Benefits of end-to-end DL approaches:

- more natural movements
- learned from scratch
- discovery of unconventional/ non-obvious behaviour (e.g. grasping of soft vs. hard objects)

Levine et al. (2016)

Machine Learning in Robotics

Thanks for your attention!

Questions?

References

- Bezák, P., Nikitin, Y. R., and Božek, P. (2014). Robotic grasping system using convolutional neural networks. *American Journal of Mechanical Engineering*, 2(7):216–218.
- Finn, C. (2015). End-to-end training of deep visuomotor policies [video file]. Retrieved from https://www.youtube.com/watch?v=Q4bMcUk6pcw#t=172.
- Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 609–616. ACM.
- Levine, S. (2015). Deep learning for decision making and control [video file]. Talk at CSE 519 Colloquium. Retrieved from https://www.cs.washington.edu/events/colloquia/search/details?id=2686.
- Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2015). End-to-end training of deep visuomotor policies. arXiv preprint arXiv:1504.00702v5.

References (cont.)

- Levine, S., Pastor, P., Krizhevsky, A., and Quillen, D. (2016). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. *arXiv preprint arXiv:1603.02199*.
- Ng, A. (2016). How scale is enabling deep learning [video file]. Retrieved from https://www.youtube.com/watch?v=LcfLo7YP804.
- Pastor, P. (2016a). Continuous visual feedback improves grasp success rate [video file]. Retrieved from https://www.youtube.com/watch?v=H4V6NZLNu-c.
- Pastor, P. (2016b). Learning hand-eye coordination for robotic grasping [video file]. Retrieved from https://www.youtube.com/watch?v=18zKZLqkfII#t=13.
- Pastor, P. (2016c). One-shot grasping often leads to failed grasp attempts [video file]. Retrieved from https://www.youtube.com/watch?v=Q9tDHuidzak.
- Sutton, R. S. and Barto, A. G. (1998). *Reinforcement learning: An introduction*, volume 1. MIT press Cambridge.