

Department of Informatics Intelligent Robotics WS 2015/16

23.11.2015

Object Recognition SIFT vs Convolutional Neural Networks

Josip Josifovski
4josifov@informatik.uni-hamburg.de

Outline

- Object recognition:
 - Definition, problem, human vision system and machine vision
- Scale Invariant Feature Transform (SIFT)
 - Algorithm details and example
- Convolutional Neural Networks (CNNs)
 - Algorithm details and example
- Comparison of SIFT and CNN
 - Biological plausibility, complexity, resources and applicability
- Summary

Object recognition - Definition

"The term **recognition** has been used to refer to many different visual capabilities, including **identification**, **categorization** and **discrimination**. Normally, when we speak of **recognizing an object** we mean that we have successfully categorized as an instance of a particular object class."

Liter, Jeffrey C., and Heinrich H. Bülthoff. "An introduction to object recognition." Zeitschrift für Naturforschung C 53.7-8 (1998): 610-621.

Identification – equality on a physical level

Categorization – assigning an object to some category, as humans do

Discrimination – classification, assigning an object to one class

Object recognition – Problem

http://www.kyb.tuebingen.mpg.de/typo3temp/pics/915b4f5fb5.jpg

How humans do it?

- Easy task for human
- Two pathways for processing of visual input in the brain:
 - Ventral pathway
 - Dorsal pathway
- Hierarchical processing in the cortex:
 - Increasing receptive fields
 - Increasing complexity of details

Kruger, Norbert, et al. "Deep hierarchies in the primate visual cortex: What can we learn for computer vision?." Pattern Analysis and Machine Intelligence, IEEE Transactions on 35.8 (2013): 1847-1871.

How machines do it?

- Hard task for machine
- Different transformations, distortions, scene conditions, viewing angles

 Most often recognition is done by extracting local features of object and trying to match them with features of unknown object

Scale Invariant Feature Transform

- Published by David G. Lowe in 1999
- Invariant to scaling, rotation and translation
- Partially invariant to illumination changes or affine or 3D projection
- Transforms an image into a large collection of local feature vectors (local descriptors called SIFT keys)
- Patented University of British Columbia

SIFT steps

1) Scale-space extrema detection

- Convolving image with Gaussian kernel repeatedly to get more and more blurred version of the image
- Calculating the difference image (DoG) as approximation to Laplacian of Gaussian (LoG)

http://docs.opencv.org/master/sift_dog.jpg

2) Key-point localization

- Finding the extrema (maxima or minima at each level of the pyramid)
- Comparing the extrema to layers above or below to check if it is stable

http://docs.opencv.org/master/sift_local_extrema.jpg

SIFT steps (cont)

3) Orientation assignment

- Calculation of gradient magnitude and orientation at each pixel of the smoothed images in the pyramid
- Determining each key-point's orientation by calculating orientation histogram of its neighborhood

4) Description generation

- Consider an 8-pixel radius (16x16) around a key-point in the pyramid level at which the key is detected
- Calculate an 8-bin orientation histogram for each 4x4 region. The descriptor is the 128-dimensional vector containing the histogram values of the 16 regions.

5) Indexing and matching

- Creating a hash table (dictionary) with descriptors of sample images
- Descriptors extracted from a new image are matched to the ones from the dictionary to recognize objects

http://www.codeproject.com/KB/recipes/619039/SIFT.JPG

SIFT - Example

https://www.youtube.com/watch?v=3dY4uvSwiwE

Convolutional Neural Network (CNN)

- Follows the principles of visual processing in the brain
- Basic idea introduced by Fukushima in the 1980s
- Improved by Jan LeCunn, most popular model LeNet
- Convolutional neural networks
 have recently become very popular
 in image and video processing

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.

CNN – the architecture

- Basic principles:
 - local receptive fields
 - weight sharing
 - subsampling

- Layer types:
 - input layer
 - convolutional layer
 - subsampling layer
 - output layer

- Training:
 - Backpropagation
 - Adaptive weights

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.

CNN – features and feature maps

- Different feature extractors (filters) emerge at different layers during the training of the network
 - Low layer features: lines, contrast, color
 - Medium layer features: corners or other edge/color conjunctions, textures
 - High layer features: more complex, class specific

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." Computer Vision–ECCV 2014. Springer International Publishing, 2014. 818-833.

CNN – Example

1) LeNet 5

http://yann.lecun.com/exdb/lenet/index.html

2) ImageNet 2014: Interface for comparing human performance with the winner GoogLeNet

http://cs.stanford.edu/people/karpathy/ilsvrc/

Comparison of SIFT and CNN

Biological plausability: Since the most sophisticated vision system is the human one, the intuition is to understand it and apply its elements in computer vision

SIFT

- Neurons in the inferior temporal cortex
 that respond to complex, scale invariant
 features
- The feature extraction and learning process of SIFT is **very different** than the processing in the human brain
- It is a neural network model, it has been inspired by the way **brain** works.
- The way of feature extraction and generalization from simple to complex is much **more similar** to the processing in the human visual system

Comparison of SIFT and CNN (cont.)

Complexity and demand for resources: Design complexity, processing power and memory demands, training set, speed of output

SIFT

- Simpler deign and less parameters
 to set compared to CNN
- Less processing power needed, memory needed for storing features for each image
- Smaller training set
- Fast

- Needs **experience** to make design decisions
- High demand for processing during the training phase, memory needed to store the weights of the network
- The bigger the training set the better
- Slower than SIFT

Comparison of SIFT and CNN (cont.)

Applicability: Range of problems and scenarios in which SIFT and CNN can be applied.

SIFT

- More relevant for identification tasks
- SIFT and SIFT like descriptors are used in vide range of vision tasks
- Can be used for real time scenarios

CNN

- More relevant for classification and categorization tasks, has very good generalization abilities
 - Currently **very popular** model for image and video tasks

CNN and SIFT - Pros & Cons

	Good	Bad
SIFT	Identification tasksSimple to implementFast	 Poor generalization Not robust to non- linear transformations
CNN	Classification tasksStrongly bio-inspiredVery good generalization	Lots of processing powerBig training datasetsParameters to set
	generalization	• Parameters to set

Questions?

Thank you for the attention

Literature

- 1) Liter, Jeffrey C., and Heinrich H. Bülthoff. "An introduction to object recognition." Zeitschrift für Naturforschung C 53.7-8 (1998): 610-621.
- 2) Kruger, Norbert, et al. "Deep hierarchies in the primate visual cortex: What can we learn for computer vision?." Pattern Analysis and Machine Intelligence, IEEE Transactions on 35.8 (2013): 1847-1871.
- 3) Lowe, David G. "Object recognition from local scale-invariant features." Computer vision, 1999. The proceedings of the seventh IEEE international conference on. Vol. 2. Ieee, 1999.
- 4) Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.
- 5) Fischer, Philipp, Alexey Dosovitskiy, and Thomas Brox. "Descriptor matching with convolutional neural networks: a comparison to sift." arXiv preprint arXiv:1405.5769 (2014).
- 6) Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." Computer Vision–ECCV 2014. Springer International Publishing, 2014. 818-833.