Surface Reconstruction with Alpha Shapes

Erik Fließwasser

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

07. December 2015
Outline

1. Motivation
2. Background
3. Alpha Shapes
4. Application in Robotics
5. Problems & Limitations
6. Comparison
Motivation
How to reconstruct a surface from a given set of points?

INPUT
range or contour data
(e.g. from laser range finder)

OUTPUT
(most optimal) approximation of the real surface

Point set [4]

Alpha Shape [4]
Motivation
The ice cream analogy

- ice cream with solid chocolate chips
- spherical ice spoon
- curve out all parts of the ice cream without touching the chocolate chips
- straighten all curvatures

Alpha Shape in 2-dimensional space [4]
Background:
How about the theory?

2D/3D
Explanation will be for 2D, extending to 3D is trivial
Background

k-simplex

Definition

k-simplex: Any subset $T \subseteq S$ of size $|T| = k + 1$, with $0 \leq k \leq 3(d)$ defines a k-simplex \triangle_T that is the convex hull of T. [8]

http://kurlin.org/blog/complexes-are-discretizations-of-shapes/
Background

Simplicial complex

Definition

Simplicial complex:
A collection C of simplices forms a simplicial complex if it satisfies the following conditions:

1. for a simplex Δ_T of C, the boundary simplices of Δ_T are in C
2. for two simplices of C, their intersection is either \emptyset or a simplex in C

[5]
Background

Delaunay triangulation

Problem

- Given: point set S
- Underlying space: convex hull of S
- Goal: Divide $\text{conv}(S)$ into triangles with points of S as vertices.
Background
Delaunay triangulation (cont.)

Algorithm

For each subset $T \subseteq S$, with $|T| = 3$
1. Test whether the circumcircle of T is empty
2. If yes, the points of T make up a triangle
3. otherwise discard T
Background
Delaunay triangulation (cont.)

Algorithm

For each subset $T \subseteq S$, with $|T| = 3$

1. Test whether the circumcircle of T is empty
2. If yes, the points of T make up a triangle
3. Otherwise discard T

Emptiness test is successful
Background

Delaunay triangulation (cont.)
The alpha complex C_α is a subcomplex of the Delaunay triangulation (DT)

Each k-simplex $\Delta_T \in DT(S)$ is in the alpha complex C_α if

(i) the circumcircle of T with radius $r < \alpha$ is empty or

(ii) it is a boundary simplex of a simplex of (i)

The polytope S_α then is the underlying space (i.e. union of all k-simplices Δ_T) of the alpha complex C_α:

$$|C_\alpha| = S_\alpha$$
Alpha Shapes
Family

Family of α-shapes S_α ($0 \leq \alpha \leq \infty$)

$\alpha = \{0, 0.19, 0.25, 0.75, \infty\}$ [10]

$S_0 = S$

$S_\infty = \text{conv}(S)$
Application in Robotics

Scene recovery and analysis

3D Scene Recovery and Spatial Scene Analysis for Unorganized Point Clouds [9]

- extracting spatial entities from point clouds
- region growing as segmentation method
- surface reconstructing of each region by alpha shapes
- properties of alpha shapes are used to infer semantics
Application in Robotics

Scene recovery and analysis

- Extracting spatial entities from point clouds
- Region growing as segmentation method
- Surface reconstructing of each region by alpha shapes
- Properties of alpha shapes are used to infer semantics
Problems & Limitations - Accuracy

- Choosing the ”best” α value is not trivial \rightarrow some (heuristical) methods
- Not for all object’s surfaces there is a good α value due to non-uniformly sampled data
 - Interstices might be covered
 - Neighboring objects might be connected
 - Joints or sharp turns might not be sharp anymore

[10] E. Fließwasser
Problems & Limitations
Accuracy

Improvement: locally adjusting α test

- density scaling [10]
- anisotropic scaling [10]
- weighted alpha shapes [7]

Left: density scaling, right: added anisotropic scaling
Problems & Limitations

Time complexity

- Depends mostly on computation of Delaunay triangulation
- For DT in worst-case $O(n^2)$, with n as number of points
- Edelsbrunner and Shar [6] developed a method for regular triangulations that performs with $O(n \log n)$. Mostly gives a complexity closer to linear. [10]
Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Time complexity</th>
<th>Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocone Algorithm[1]</td>
<td>quadratic (based on Voronoi Filtering)</td>
<td>Noise: no; Undersampling: no</td>
</tr>
</tbody>
</table>

- There are (heuristical) methods that improve robustness for each algorithm.
- Especially for undersampling and non-uniform sampled data by local adaption.

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s) and Title</th>
</tr>
</thead>
</table>

Surface reconstruction with anisotropic density-scaled alpha shapes.