Robot Architecture

Gerrit Glaser 15.05.2014

Contents

- Robot Architecture
- Hierarchical Paradigm
- Reactive Paradigm
- Hybrid Architectures
- List of References

Robot Architecture

- Software architecture
 - Structure of algorithms
- Overall philosophy
 - Language
 - Tools
- Mainly two paradigms
 - Model-based deliberate control
 - Reactive control

Contents Hierarchical Paradigm

- Hierarchical Paradigm
 - SPA Cycle
 - World Model
 - Strips Algorithm
 - Representing Architectures
 - Nested Hierarchical Controller

Hierarchical Paradigm

- Oldest approach of organizing intelligence
- Brought up in 1967 dominating up to late 1980s
- Model-based deliberate control
- Sequential execution
- Monolithic sensing

Hierarchical Paradigm: SPA Cycle

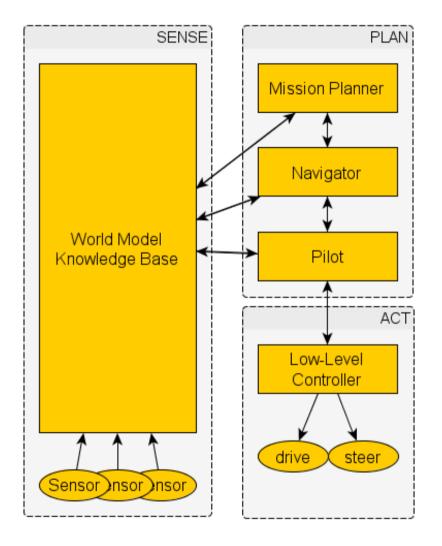
- SENSE-PLAN-ACT cycle
 - Sense
 - · Senses the world, constructs a world model
 - Plan
 - Plans all directives from current state to goal
 - Act
 - Executes first directive and goes to sense again

Hierarchical Paradigm: World Model

- World model
 - Updated in SENSE step
 - Three parts
 - Provided representation of the world
 - Sensing information
 - Additional cognitive knowledge

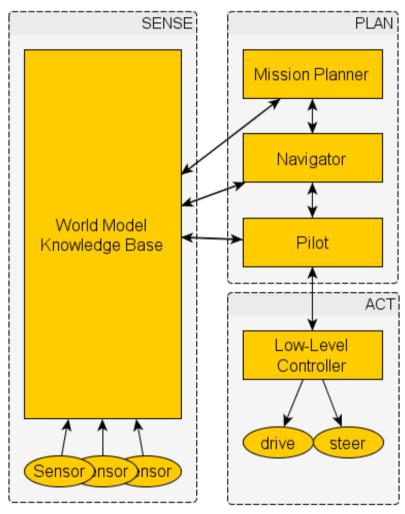
Hierarchical Paradigm: Strips Algorithm

- Algorithm for planning how to accomplish goals
- Means-end analysis
 - gradually reduces distance between current state and goal
 - Uses difference tables
 - Complex, many exceptions


distance	operator	preconditions
d<1000	walk	
d>=1000	take_bus	at bus station
	take_car	at parking lot

Hierarchical Paradigm: Representing Architectures

- Nested Hierarchical Controller (NHC)
 - splitting of planning in three subsystems
- National Institute of Standards and Technology Real-time Control System (NIST RCS)
 - Standard for intelligent industrial robots
 - Sensor preprocessing

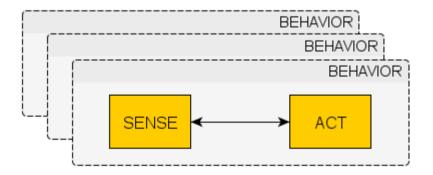

HP: Nested Hierarchical Controller

- Mission Planner
 - High level of abstraction
 - Receive mission from person
 - Get current position and target from model
 - Invokes navigation

HP: Nested Hierarchical Controller

- Navigator
 - Calculates path from current location to task location
- Pilot
 - Follows path, controls motors, informs navigator when done
 - Checks world model and adjusts path accordingly

Contents Reactive Paradigm


- Reactive Paradigm
 - SENSE-ACT
 - Characteristics
 - Architectures
 - Subsumption
 - Aspects
 - Evaluation

Reactive Paradigm

- Developed in the late 1980s due to the hierarchical paradigm's lack of expandability
- Vertically layered
 - Decompose functionality into behaviors
 - Tight coupling between sensing and acting \rightarrow fast
- Imitates behavior of insects/animals
- No need for a world model

Reactive Paradigm: SENSE-ACT

- Threw away the PLAN phase
 - Mapping sensor inputs to actions
 - Sensor fusion for more complex behaviors

Reactive Paradigm: Characteristics

- Situated Agent
 - Robot is part of the world, can change the environment
- Behaviors as basic building blocks
- Ego-Centric
 - No global model is created, only sensable things are known
- Follows good software design principles
 - Modularity, decomposition of task into component behaviors
- Animal models cited as basis
 - Nowadays acceptable, in the beginning not

Reactive Paradigm: Architectures

- Architecture must provide mechanisms for
 - Triggering behaviors
 - What happens when multiple behaviors are active
- Dominant architectures
 - Subsumption architecture
 - Potential Field based architectures
- Other architectures
 - Rule encoding, fuzzy methods, winner-take-all voting

Reactive Paradigm: Subsumption

- Invented by Rodney Brooks
 - Most influential purely reactive system
 - Shoe-box sized insects with six legs
 - Directly embedded into hardware (on-board computing)
 - Elimination of move-think pauses
 - Behavior network of sensing and acting modules that accomplish a task

Reactive Paradigm: Subsumption Aspects

- Layers of competence
 - Reflect a hierarchy of intelligence/competence
 - Higher layers are more goal oriented
- Layers can subsume lower layers
 - Top to bottom override or subsumption (winnertake-all)
- No internal state
- Taskable
 - Activate lower layers

Reactive Paradigm: Subsumption Evaluation

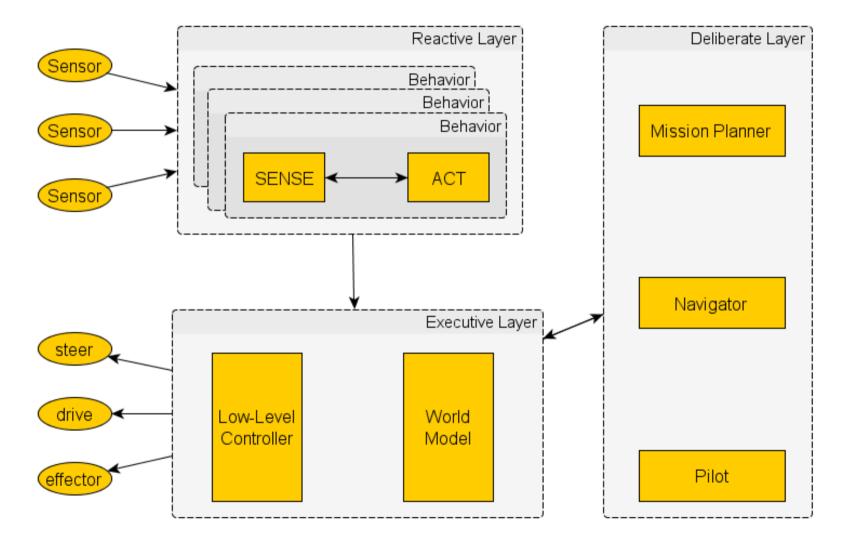
<u>Advantages</u>

- Modular, easy to test
- Easily expandable
- Real-time reaction
- Inexpensive
- Low coupling, high cohesion

<u>Disadvantages</u>

- Not easily taskable
- Not useful for reaching global targets

Contents Hybrid Architectures


- Three Layer Architecture
 - Evaluation
- Other Possible Layers

Hybrid Architectures: Three Layer Architecture

- Combines reaction with deliberation
 - Reactive layer
 - Low level control, tight sensor-action coupling
 - Executive layer
 - "Glue" between reactive and deliberate layer
 - Integrates sensor information into the world model
 - Sequences directives by the deliberate layer for the reactive layer
 - Deliberate layer
 - Generate global solutions to complex tasks by planning
 - Works on models (pre-supplied or learned)

15.05.2014 Gerrit Glaser

Hybrid Architectures: Three Layer Architecture

Hybrid Architectures: Three Layer Evaluation

<u>Advantages</u>

- Combines advantages from hierarchical and reactive paradigm
- Reacts to unexpected circumstances
- World model to plan global solutions

<u>Disadvantages</u>

• Expensive regarding performance

Hybrid Architectures: Other Possible Layers

- Supervisor layer
- Sensor integration layer
- Sensor interpretation layer
- User interface layers
 - To control the interaction with persons
- Layers for coordination with other robots

List of References

- Robin R. Murphy
 - Introduction to AI Robotics
 - ISBN: 978-0-262-13383-8
- Stuart Russell & Peter Norvig
 - Artificial Intelligence: A modern Approach Second Edition
 - ISBN: 0-13-080302-2