
University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning (2)

Reinforcement Learning (2)
Algorithmic Learning 64-360, Part II

Norman Hendrich

University of Hamburg
MIN Faculty, Dept. of Informatics

Vogt-Kölln-Str. 30, D-22527 Hamburg
hendrich@informatik.uni-hamburg.de

26/06/2013

N. Hendrich 1

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning (2)

Contents

Examples: Matlab

Dynamic Programming
Asynchronous Dynamic Programming
Monte-Carlo Methods
Temporal-Difference Learning: Q-Learning and SARSA
Acceleration of Learning
Applications in Robotics
Grasping with RL: Parallel Gripper
Grasping mit RL: Barrett-Hand

N. Hendrich 2

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Three classical RL examples: Matlab demos

I pole-balancing cart

I underpowered mountain-car

I robot inverse-kinematics

I those are all toy problems
I small state-spaces
I simplified environment models (e.g., no realistic physics)
I but intuitive interpretation and visualization

I the learning-rules (Q, SARSA) will be explained later

Demos from Jose Antonio Martin, Madrid: http://www.dacya.ucm.es/jam/download.htm

N. Hendrich 3

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Pole-balancing cart

I balance a pole against gravity

I simplest version is 1D: pole on cart on tracks
I 1D-balancing already requires 4 DOF:

I x : position of the cart (should be near origin)
I ẋ : velocity of the cart
I θ: angle of the pole (zero assumed to be upright)
I θ̇: angular velocity of the pole

I simplified physics, discretization of state-space
I model as an episodic task

I cart position |x | > xmax terminates the task
I pole falling down |θ| > θmax terminates the task

N. Hendrich 4

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Pole-balancing cart: reward function

if |x | > 4 or |θ| > 25o : (failure)
r = −10000− 50 ∗ |x | − 100 ∗ |θ|

else: r = 10− 10 ∗ |10 ∗ θ|2 − 5 ∗ |x | − 10 ∗ |θ̇|
I punishing deviations from x = 0 and θ = 0

I in other words, use prior knowledge to guide the learner

N. Hendrich 5

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Pole-balancing cart: videos

Many related problems:

I pole-balancing in 2D
I decouple into two 4-DOF problems
I don’t try 8-DOF

I inverse pendulum
I multi-joint inverse-pendulum
I acrobot
I . . .

In theory, all those problems could be modelled analytically, using
the corresponding differential-equations for the system. But in
practice, this is impossible due to modelling errors, e.g. unknown
mass and inertia of the moving parts.

N. Hendrich 6

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Mountain-car

I underpowered car should climb a mountain-slope

I simplified physics model

I actions are full-throttle a ∈ {−1, 0,+1}
I but constant a = +1 is not sufficient to reach the summit

I car must go backwards first a bit or even oscillate to build
sufficient momentum to climb the mountain

I simple example of problems where the agent cannot reach the
goal directly, but must explore intermediate solutions that seem
counterintuitive

I typical example of delayed reward

N. Hendrich 7

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Mountain-car

Details: Sutton and Barto, chapter 8.10

N. Hendrich 8

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Mountain-car: Matlab demo reward function

I +100 reward for reaching the mountain-summit

I −1 reward for every timestep without reaching the summit

I every episode is terminated after 1000 timesteps

N. Hendrich 9

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Inverse-Kinematics: planar robot

N. Hendrich 10

University of Hamburg

MIN Faculty

Department of Informatics

Examples: Matlab Reinforcement Learning (2)

Inverse-Kinematics: planar robot

I planar three-link robot (2D)

I try to reach given position (x , y) position

I need to calculate joint-angles {θ1, θ2, θ3}
I actions are joint-movements ∆θi ∈ {−1, 0,+1}

Note:

I calculating (x , y) for given (θ1, θ2, θ3) is straightforward,

I but inverse-kinematics is much harder

I in general, no analytical solutions possible

I especially with high-DOF systems:
humans, animals, humanoid robots: 70-DOF+

N. Hendrich 11

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Dynamic Programming

I overview of classical solution methods for MDPs, called
dynamic programming

I based on the Bellman-equations

I also, the main theory behind RL

I demonstration of the application of DP — examples for
calculating value functions and optimal policies

I discussion about the effectiveness and usefulness of DP

Details: Sutton and Barto, chapter 4

N. Hendrich 12

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Dynamic Programming for model-based learning

Dynamic Programming is a collection of approaches that can be
used if a perfect model of the MDP’s is available: We assume the
Markov property, and Pa

ss′ and Ra
ss′ are known.

In order to calculate the optimal policy, the Bellman-Equations are
embedded into an update function that approximates the desired
value function V .
Three steps:

1. Policy Evaluation

2. Policy Improvement

3. Policy Iteration

N. Hendrich 13

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Evaluation (1)

Policy Evaluation: Calculate the state-value function V π for a
given policy π.

State-value function for policy π:

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1 | st = s

}

Bellman-Equation for V π:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

– a system of |S | linear equations
N. Hendrich 14

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Evaluation (2)

Policy Evaluation is a process of calculating the value-function
V π(s) for an arbitrary policy π .
Based on the Bellman equation, an update rule can be created
that calculates the approximated value-function V0,V1,V2,V3, . . .

Vk+1(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)] ∀s ∈ S

Based on the k-th approximation Vk for each state s, the
(k + 1)-th approximation Vk+1 is calculated iteratively. The old
value of s is replaced by an updated one that has been calculated
with the iteration rule based on the old values.
It can be shown that the sequence of the iterated value-functions
{Vk} converges to V π, if k →∞.

N. Hendrich 15

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Policy Evaluation

Input π, the policy to evaluate
Initialize V (s) = 0, for all s ∈ S
Repeat

∆← 0
For every s ∈ S :

v ← V (s)
V (s)←

∑
a
π(s, a)

∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

∆← max(∆, |v − V (s)|)

until ∆ < θ (a small positive real number)
Output V ≈ V π

N. Hendrich 16

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Policy Evaluation

Note: this algorithm is conceptually very simple, but
computationally very expensive. It requires a full sweep across all
actions a for all states s in the state-space S :

I typically, exponential in the number of dimensions of (s, a);
all states and actions are tested many times

I requires full knowledge of the dynamics of the environment,
Pa
ss′ and Ra

ss′ are required

I the algorithm only terminates if the change in V (s) is smaller
than ∆, even if the policy π is still suboptimal

I better algorithms try to reduce the number of policy-evaluation
steps, or try to bypass this step entirely

N. Hendrich 17

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Example: another gridworld

I agent moves across the grid: a ∈ {up, down, left, right}
I non-terminal states: 1, 2, . . . , 14

I one terminal state: {0, 15} (shaded: one state, but two squares)

I therefore: an episodic task, undiscounted (γ = 1)

I actions that would take the agent from the grid leave the state
unchanged

I the reward is −1 until the terminal state is reached

N. Hendrich 18

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Policy Evaluation for the gridworld (1)

left: Vk(s) for the random policy π (random moves)

right: moves according to the greedy policy Vk(s)

N. Hendrich 19

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Policy Evaluation for the gridworld (2)

In this example: the greedy policy for Vk(s) is optimal for k ≥ 3.

N. Hendrich 20

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (1)

We now consider the action value function Qπ(s, a), when action a
is chosen in state s, and afterwards Policy π is pursued:

Qπ(s, a) =
∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

In each state we look for the action that maximizes the action
value function.
Hence a greedy policy π′ for a given value function V π is
generated:

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

N. Hendrich 21

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (2)

Suppose we have calculated V π for a deterministic policy π.
Would it be better to choose an action a 6= π(s) for a given state?
If a is chosen in state s, the value is:

Qπ(s, a) = Eπ{rr+1 + γV π(st+1)|st = s, at = a}
=

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

It is better to switch to action a in state s, if and only if

Qπ(s, a) > V π(s)

N. Hendrich 22

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (3)

Perform this for all states, to get a new policy π, that is greedy in
terms of V π:

π
′
(s) = argmax

a
Qπ(s, a)

= argmax
a

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

Then V π′ ≥ V π

N. Hendrich 23

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (4)

What if V π′
= V π?

e.g. for all s ∈ S , V π′
(s) = max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]?

Notice: this is the optimal Bellman-Equation.

Therefore V π′
= V ∗ and both π and π′ are optimal policies.

N. Hendrich 24

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Methods

V0 → V1 → . . .→ Vk → Vk+1 → . . .→ V π

⇑ an “iteration”

An iteration comprises one backup-operation for each state.

A full-policy evaluation-backup:

Vk+1(s)←
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

N. Hendrich 25

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (1)

If Policy Improvement and Policy Evaluation are performed in turn,
this means that the policy π is improved with a fixed value
function V π, and then the corresponding value function V π′

is
calculated based on the improved policy π′.
Afterwards again policy improvement is used, to get an even better
policy π′′, and so forth . . . :

π0
PE−→ V π0

PI−→ π1
PE−→ V π1

PI−→ π2
PE−→ V π2 · · · PI−→ π∗

PE−→ V ∗

Here
PI−→ stands for performing policy improvement and

PE−→ for
policy evaluation.

N. Hendrich 26

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (2)

π0 → V π0 → π1 → V π1 → . . . π∗ → V ∗ → π∗

policy-evaluation ⇑ ⇑ policy-improvement “greedification”

N. Hendrich 27

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (3)

1. initialization
V (s) ∈ < and π(s) ∈ A(s) arbitrarily for all s ∈ S

2. policy-evaluation
Repeat

∆← 0
for every s ∈ S :

v ← V (s)

V (s)←
∑
a
π(s, a)

∑
s′

P
π(s)
ss′ [R

π(s)
ss′ + γV (s ′)]

∆← max(∆, |v − V (s)|)
until ∆ < θ (a small real positive number)

N. Hendrich 28

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (4)

3. policy-improvement

policy-stable ← true
for every s ∈ S :

b ← π(s)
π(s)← arg max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV (s ′)]

if b 6= π(s), then policy-stable ← false
If policy-stable, then stop; else goto 2

Note: this algorithm converges to the optimal value-function V ∗(s)
and the optimal policy π∗ (but may take a long time).

N. Hendrich 29

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Example: Jack’s car rental

Jack manages two locations for a car rental company. Every day
some number of customers arrive at each location to rent cars.

If Jack has a car available, he rents it out and is credited by $10 by
the company. If he is out of cars at that location, then the business
is lost. Cars become available for renting the day after they are
returned. To help ensure that cars are available where they are
needed, Jack can move them between the two locations overnight,
at a cost of $2 per car moved.

N. Hendrich 30

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Jack’s car rental (2)

We assume that the number of cars requested and returned at each
location are Poisson random variables, meaning that the probability
that the number is n is λn

n! e−λ, where λ is the expected number.

I note: Poisson-probabilities are hard to handle analytically

I assume λ is 3 and 4 for car rental requests,

and λ is 3 and 2 for car returns

at Jack’s first and second locations

I also assume there are n < 20 cars

I a maximum of m < 5 cars can be moved between the two
locations overnight

I discount rate s γ = 0.9, time-steps are days.

N. Hendrich 31

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Jack’s car rental (3)
cars moved from 1 to 2: Policies π0 up to π4 and value function V4(s)

N. Hendrich 32

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Value Iteration

A method to improve convergence speed. In policy-evaluation, we
use the full policy-evaluation backup:

Vk+1(s)←
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

Instead, the full value-iteration backup is:

Vk+1(s)← max
a

∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

N. Hendrich 33

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Value Iteration

Initialize V arbitrarily, e.g. V (s) = 0, for all s ∈ S
repeat

∆← 0
For every s ∈ S :

v ← V (s)
V (s)← max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV (s ′)]

∆← max(∆, |v − V (s)|)
until ∆ < θ (a small positive real number)

Output is a deterministic policy π with
π(s) = arg max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV (s ′)]

N. Hendrich 34

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Gambler’s Problem: Example

A gambler has the opportunity to make bets on the outcomes of a
sequence of coin flips. If the coin comes up heads, he wins as many
dollars as he has staked on that flip; if it is tails, he loses his stake.

The game ends when the gambler wins by reaching his goal of
$100, or loses by running out of money. On each flip, the gambler
must decide what portion of his capital to stake, in integer number
of dollars.

The problem can be formulated as an undiscounted episodic finite
MDP. The state is the gambler’s capital, s ∈ {1, 2, . . . , 99} and
the actions are stakes, a ∈ {1, 2, . . . ,min(s, 100− s)}.

N. Hendrich 35

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Gambler’s Problem (2)

The reward is zero on all transitions except those on which the
gambler reaches his goal, when it is +1. The state-value function
then gives the probability of winning from each state. A policy is a
mapping from levels of capital to stakes. The optimal policy
maximizes the probability of reaching the goal (winning $100).

Let p denote the probability of the coin coming up heads. If p is
known, then the entire problem is known and it can be solved, for
instance by value-iteration. The next figure shows the change in
the value function Vp=0.4(s) over successive sweeps of value
iteration, and the final policy found, for the case of p = 0.4.

N. Hendrich 36

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Gambler’s Problem (3)
Estimates of the value function V (s) for p = 0.4

N. Hendrich 37

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Optimal policy for p = 0.4

I Why would this be a good policy?

I e.g, for s = 50 betting all on one flip, but nor for s = 51

N. Hendrich 38

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous Dynamic Programming Reinforcement Learning (2)

Asynchronous Dynamic Programming

I all DP-methods described so far require complete iterations
over the entire set of states.

I asynchronous DP does not perform complete iterations,
instead, it works like this:

Repeat until the convergence criterion is met:

I pick a random state and apply the appropriate backup.

I this still requires a lot of computation, but allowing a tradeoff
between PE and PI

I the states for the application of the backup can be selected,
e.g. the experience of an agent can serve as a guide.

N. Hendrich 39

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous Dynamic Programming Reinforcement Learning (2)

Generalized Policy Iteration (GPI)

Generalized Policy Iteration (GPI): Every interaction between
policy evaluation and policy improvement, independent from their
”granularity”

geometric metaphor

for the convergence of GPI:

N. Hendrich 40

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous Dynamic Programming Reinforcement Learning (2)

Efficiency of DP

I finding an optimal policy is polynomial in the number of states
s ∈ S

I unfortunately, the number of states is often extremely high;
typically grows exponentially with the number of
state-variables: Bellman’s curse of dimensionality

I in practice, the classical DP can be applied to problems with a
few million states

I the asynchronous DP can be applied to larger problems and is
also suitable for parallel computation

I it is surprisingly easy to find MDPs, where DP methods can
not be applied

N. Hendrich 41

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous Dynamic Programming Reinforcement Learning (2)

Summary: Dynamic Programming

I Policy Evaluation: complete backups without maximum

I Policy Improvement: form a greedy policy, even if only locally

I Policy Iteration: alternate the above two processes

I Value Iteration: use backups with maximum

I Complete Backups (over the full state-space S)

I Generalized Policy Iteration (GPI)

I Asynchronous DP: a method to avoid complete backups

N. Hendrich 42

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo methods

I catchy name for many algorithms based on random numbers
I in the context of reinforcement learning: refers to algorithms

that learn directly from the agents’ experience
I use the collected return to estimate V (s)
I then derive good policy π
I only defined for episodic tasks

I online learning: no model of the environment required, but still
converges to the optimal policy π∗

I simulation: learn a policy for the real environment on a
simulated (partial) model of the environment

N. Hendrich 43

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo methods: basic idea

I given: MDP, initial policy π

I goal: learn V π(s)

I run a (large) number of episodes,

I record all states si visited by the agent,

I record the final return Rt collected at the end of each episode

I for all states si visited during one episode, update V (si) based
on the return collected in that episode

I this converges for all states that are visited ”often”

N. Hendrich 44

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

First-visit and Every-visit Monte Carlo

Two ways to update V π(s) from an episode trace:
I first-visit MC: update V π(si) only for the first time that state

si is visited by the learner
I every-visit MC: update V π(si) every time that state si is visited.

I first-visit MC convergence: each return is an independent,
identically distributed estimate of V π(s). By the law of large
numbers the sequence of averages converges to the expected
value. The standard deviation of the error falls as 1/

√
n, where

n is the number of returns averaged.
I both algorithms converge asymptotically

N. Hendrich 45

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo first-visit policy evaluation

Initialize:
π: the policy to evaluate
V : initial estimate of the value function
Returns(s): an empty list of returns, for all s ∈ S

Repeat:
(1) generate an episode using policy π
(2) for every state s visited in the episode:

R ← Return for the first visit of s
append R to Returns(s)
V (s)← average(Returns(s))

N. Hendrich 46

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Example: playing Blackjack

Goal: obtain cards whose sum is as large as possible, but not
exceeding 21. Face cards count as 10, an ace can count either as 1
or 11. Here, considering a single player vs. the dealer.

Game begins with two cards dealt to both dealer and player. One
of the dealer’s cards is faceup, the other is facedown. Player can
ask for additional cards (hit) or stop (stick), and loses (goes bust)
when the sum is over 21. Then it is the dealer’s turn, who has a
fixed strategy: dealer sticks on any sum of 17 or greater, and hits
otherwise. If the dealer goes bust, then the player wins; otherwise
the outcome is determined by whose final sum is closer to 21.

N. Hendrich 47

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Modeling Blackjack

Model as an episodic finite MDP; each game is one episode. All
rewards within a game are zero, no discount (γ = 1). Assume that
cards are dealt from an infinite deck, so no need to keep track of
cards already dealt.
I states:

I sum of current cards (12 .. 21)
I visible cards of the dealer (ace .. 10)
I player has useable ace (1 or 11)
I total number of states is 200.

I reward: +1 for winning, 0 for draw, -1 for losing

I return: same as reward

I actions: hit or stick

N. Hendrich 48

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Solving Blackjack

I example policy π is: stick if sum is 20 or 21,
otherwise hit (i.e., ask for another card)

I simulate many blackjack games using the policy, and average
the returns following each state

I this uses random numbers for the card generation

I states never recur in the task, so no difference between
first-visit and every-visit MC

I next slide shows the estimated value-function V (s) after 10000
and 500000 episodes. Separate functions are shown for whether
the player holds an useable ace or not.

N. Hendrich 49

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Solving Blackjack: V π(s)

Approximated state-value functions V (s) for the policy that sticks only on 20 or 21. Not the best policy. . .

N. Hendrich 50

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Solving Blackjack: V π(s)

Think about the estimated function:

I why is the ”useable-ace” function more noisy?

I why are the values higher for the useable-ace case?

I how to explain the basic shape of the value function?

I why does the function drop-off on the left?

I . . .

N. Hendrich 51

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Solving Blackjack: MC vs. DP approaches

Note: we have complete knowledge of the environment here, but it
would still be very difficult to apply Dynamic Programming for
solving the game:

I DP requires the distribution of next events and rewards,
namely Pa

ss′ and Ra
ss′

I those are not easy to compute

I on the other hand, generating the sample games
required for MC is straightforward

I convergence may require many episodes

N. Hendrich 52

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo backup diagram

I consists of the whole episode from the
start-state to the goal-state

I exactly one action considered in each state,
namely, the action actually taken

I no bootstrapping: estimates for one state
do not depend on other estimates

I time required to estimate the value of V (s)
for a given state s does not depend
on the number of states

I option to learn V (s) only for those states
that seem interesting

N. Hendrich 53

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo estimation of action values

When a model of the MDP is available:

I estimate V π(s) for initial policy π

I use greedification to find better policy

I but: this requires a look-ahead one step to find the action that
leads to the best combination of reward and next state

Without a model:

I state values V (s) are not enough: we don’t know Pa
ss′ or Ra

ss′

I instead, consider Q(s, a) for all actions to find a better policy

I need MC method to estimate Qπ(s, a)

N. Hendrich 54

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo estimation of Qπ(s, a)

I Qπ(s, a): the expected return when starting in state s, taking
action a, and thereafter following policy π

I the Monte Carlo method is essentially unchanged:
I create and update data-structure for Q(s, a)
I first-visit: average the returns following the first time in each

episode that s was visited and a was selected
I every-fisit: average the returns following every visit to a state s

and taking action a
I again, convergence can be shown if every state-action pair is

sampled ”often”

I but one major complication: for a deterministic policy π, many
actions a may not be taken at all, and the MC estimates for
those (s, a) pairs will not improve

I need to maintain exploration

N. Hendrich 55

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo exploring starts

I start each episode using a given (s, a) pair

— instead of starting in state s and taking a according to the
current policy

I ensure that all possible (s, a) pairs are used as the starting
state with a probability p(s, a) > 0

I the Qπ(s, a) estimate will then converge

I using non-deterministic policies may be easier and quicker

I e.g., using a ε-greedy policy will also guarantee that all (s, a)
pairs are visited often

N. Hendrich 56

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo control: improving the policy

I estimate Qπ(s, a) using (one or many) MC episodes

I from time to time, update policy π using greedification

π0
E−→ Qπ

0
I−→ π1

E−→ Qπ
1

I−→ π2 . . .
I−→ π∗

E−→ Q∗

N. Hendrich 57

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo first-visit with exploring starts

Initialize for all s ∈ S , a ∈ A(s):
π: the policy to evaluate
Q(s, a): initial estimate of the value function
Returns(s, a): an empty list of returns, for all pairs (s, a)

Repeat:
(1) generate an episode using exploring starts and policy π
(2) for every pair (s, a) visited in the episode:

R ← Return for the first visit of (s, a)
append R to Returns(s, a)
Q(s, a)← average(Returns(s, a))

(3) for every s visited in the episode:
π(s)← arg max

a
Q(s, a)

N. Hendrich 58

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Solving Blackjack: Optimal policy

I remember: this policy is for fresh-cards in every game

I state-space is much more complex without card replacement
N. Hendrich 59

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Monte Carlo: summary

I our third approach to estimate V (s) or Q(s, a)
I several advantages over DP methods:

I no model of the environment required
I learning directly from interaction with the environment
I option to learn only parts of the state-space
I less sensitive should the Markov property be violated

I using a deterministic policy may fail to learn
I need to maintain exploration

I exploring starts
I non-deterministic policies, e.g. ε-greedy

I no bootstrapping

N. Hendrich 60

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Intermission: labyrinth task

G

S

G

S

S

G

I learner should find way from start-state S to goal-state G

I actions are {up, down, left, right}
I agent cannot move into walls (or outside world)

I first challenge is to design an appropriate reward-function

N. Hendrich 61

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Intermission: labyrinth task

I another gridworld-style example

I represent V (s) as 1D- or 2D-array

I actions {up, down, left, right} implemented as

∆x = ±1,∆y = ±1 (2D)

∆x = ±1,∆y = ±n (1D)

optionally, add extra grid-cells for the outer walls

explicit representation of actions using switch statement

I problem can be either easy or very (exponentially) hard
depending on the number of obstacles

I compare RL with planning algorithms (e.g. A∗)

I can random action-selection work on difficult labyrinths?

N. Hendrich 62

University of Hamburg

MIN Faculty

Department of Informatics

Monte-Carlo Methods Reinforcement Learning (2)

Intermission: gridworld example code

Example C-code for estimation of V (s) for a gridworld:

I V (s) implemented as 2D-array W matrix

I code keeps separate array V ′(s) for updated values

I V (s)← V ′(s) after each sweep through all states

I action-selection and reward calculation coded explicitly using a
switch-statement

I similar when using Q(s, a) representation

tams.informatik.uni-hamburg.de/lectures/ss2013/AL/uebungen/gridworld2.c

N. Hendrich 63

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Temporal-Difference Learning

I TD-Learning

I Q-Function

I Q-Learning algorithm

I Convergence

I Example: GridWorld

I SARSA

N. Hendrich 64

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Temporal-Difference Learning

One of the key ideas for solving MDPs:

I learn from raw experience without a model of the environment

I update estimates for V (s) or Q(s, a) based on other learned
estimates

I i.e., bootstrapping estimates

I combination of Monte Carlo and DP algorithms

I TD(λ) interpolates between MC and DP

I algorithms can be extended to non-discrete state-spaces

N. Hendrich 65

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Temporal-Difference Learning: TD Prediction

I MC methods wait until episode ends before updating V
I the MC update uses the actual return Rt received by the agent:

V (st)← V (st) + α
[
Rt − V (st)

]
I TD methods only wait one time-step, updating using the

observed immediate reward rt+1 and the estimate V (st+1).
I the simplest method, TD(0) uses:

V (st)← V (st) + α
[
rt+1 + γV (st+1)− V (st))

]
I basically, MC udpate is Rt while TD update is rt+1 − γVt(st+1)

N. Hendrich 66

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

TD Learning: TD Prediction

Reminder (definition of Return, and Bellman-Equation):

V π(s) = Eπ{Rt |st = s} (1)

= Eπ
{ ∞∑
k=0

γrt+k+1

∣∣∣ st = s
}

(2)

= Eπ
{

rt+1 + γ

∞∑
k=0

γrt+k+2

∣∣∣ st = s
}

(3)

= Eπ
{

rt+1 + γV π(st+1)
∣∣∣ st = s

}
(4)

I Monte Carlo algorithms use (1)

I Dynamic Programming uses (4)
N. Hendrich 67

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

The Q-Function

We define the Q-function as follows:

Qπ(s, a) ≡ r(s, a) + γV π(δ(s, a))

π∗ can be written as

π∗(s) = arg max
a

Q∗(s, a)

I.e.: The optimal policy can be learned, as Q is learned, even if
reward distribution r and dynamics δ are unknown.

N. Hendrich 68

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Q-Learning Algorithm (1)

Q∗ and V ∗ are closely related:

V ∗(s) = max
a′

Q∗(s, a′)

This allows the re-definition of Q(s, a):

Q(s, a) ≡ r(s, a) + γmax
a′

Q(δ(s, a), a′)

This recursive definition of Q is the basis for an algorithm that
approximates Q iteratively.

N. Hendrich 69

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Q-Learning Algorithm (2)

Let Q̂ the current approximation for Q. Let s ′ be the new state
after execution of the chosen action and let r be the obtained
reward.
Based on the recursive definition of Q the iteration-rule can be
written as:

Q(s, a) ≡ r(s, a) + γmax
a′

Q(δ(s, a), a′)

⇒:

Q̂(s, a)← r + γmax
a′

Q̂(s ′, a′)

N. Hendrich 70

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Q-Learning Algorithm (3)

The algorithm:

1. Initialize all table entries of Q̂ to 0.

2. Determine the current state s.

3. Loop
I Choose action a and execute it.
I Obtain reward r .
I Determine new state s ′.
I Q̂(s, a)← r + γmaxa′ Q̂(s ′, a′)
I s ← s ′.

Endloop

N. Hendrich 71

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Convergence of Q-Learning

Theorem: If the following conditions are met:

I |r(s, a)| <∞,∀s, a

I 0 ≤ γ < 1

I Every (s, a)-pair is visited infinitely often

Then Q̂ converges to the optimal Q∗-function.

N. Hendrich 72

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Continuous Systems

The Q function of very large or continuous state spaces cannot be
represented by an explicit table.
Instead function-approximation-algorithms are used, e.g a neural
network or B-splines.
The neural network uses the output of the Q-learning algorithm as
training examples.
Convergence is then no longer guaranteed!

N. Hendrich 73

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Example: GridWorld (1)

given: m × n-Grid

I S = {(x , y)|x ∈ {1, · · · ,m}, y ∈ {1, · · · , n}}
I A = {up, down, left, right}

I r(s, a) =

{
100, if δ(s, a) = Goalstate

0, else.

I δ(s, a) determines the following state based on the direction
given with a.

N. Hendrich 74

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Example: GridWorld (2)

Example of a path through a state space:

The numbers on the arrows show the current values of Q̂.

N. Hendrich 75

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Example: GridWorld (3)

Progression of the Q̂-values:

Q̂(S11, up) = r + γmax
a′

Q̂(s ′, a′) = 0 + 0.9 ∗ 100 = 90

Q̂(S10, right) = 0 + 0.9 ∗ 90 = 81

. . .

N. Hendrich 76

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

SARSA: On-policy learning

iterative estimation of the Q(s, a) function:

I state s, chose action a according to current policy

I check reward r , enter state s ′

I select next action a′ also according to current policy

I update

Qt+1(s, a)← Qt(s, a) + α
[
rt+1 + γQ(s ′, a′)− Q(s, a)

]
I quintuple (s, a, r , s ′, a′): SARSA

N. Hendrich 77

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

SARSA: the algorithm

Initialize Q(s, a) arbitrarily (e.g. zeros)
Repeat (for each episode):

Initialize s
Choose a from s using policy derived from Q (e.g. ε-greedy)
Repeat (for each step of episode):

Take action a, observe r , s ′

Choose a′ from s ′ using policy derived from Q (e.g. ε-greedy)
Qt+1(s, a)← Qt(s, a) + α

[
rt+1 + γQ(s ′, a′)− Q(s, a)

]
s ← s ′; a← a′;

until s is terminal

N. Hendrich 78

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

SARSA vs. Q-learning

I SARSA: select a′ according to current policy

Qt+1(s, a) = Qt(s, a) + α

[
rt+1 + γQt(s ′, a′)− Qt(s, a)

]
I Q-learning:

Qt+1(s, a) = Qt(s, a) + α

[
rt+1 + γmax

a′
Qt(s ′, a′)− Qt(s, a)

]

learning rate α, 0 < α < 1

discount factor γ, 0 ≤ γ < 1

N. Hendrich 79

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

The cliff: SARSA vs. Q-learning

I gridworld, start state S, goal state G

I reward -1 for every step, falling from the cliff -100

I ε-greedy action selection, ε = 0.1

I Q-learning learns the optimal policy: shortest path

I SARSA learns a longer but safer path, because it takes the
current policy into account (

”
on policy learning“)

N. Hendrich 80

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

The cliff: SARSA vs. Q-learning

I ε-greedy action selection, ε = 0.1

I therefore, risk of taking an explorative step off the cliff

N. Hendrich 81

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Q-Learning - open questions

I often not met: Markov assumption, visibility of states

I continuous state-action spaces

I generalization concerning the state and action

I compromise between “exploration” and “exploitation”

I generalization of automatic evaluation

N. Hendrich 82

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Backup diagrams: summary

I policy-evaluation, TD(0), SARSA
I value-iteration, Q-learning

N. Hendrich 83

University of Hamburg

MIN Faculty

Department of Informatics

Temporal-Difference Learning: Q-Learning and SARSA Reinforcement Learning (2)

Ad-hoc Exploration-Strategies

I Too extensive “exploration” means, that the agent is acting aimlessly
in the usually very large state space even after a long learning period.
Also areas are investigated, that are not relevant for the solution of
the task.

I Too early “exploitation” of the learned approximation of the
Q-function probably causes that a sub-optimal, i.e. longer path
through the state space, that has been found by occasion establishes
and the optimal solution will not be found.

There are:

I “greedy strategies”

I “randomized strategies”

I “interval-based techniques”

N. Hendrich 84

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Acceleration of Learning

Some ad-hoc methods:

I Experience Replay

I Backstep Punishment

I Reward Distance Reduction

I Learner-Cascade

N. Hendrich 85

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (1)

A path through the state space is considered as finished as soon as
G is reached.
Now assume that during the Q-learning the path is repeatedly
chosen.

Often new learning steps are much more cost- and time-consuming
than internal repetitions of previously stored Learning steps. For
these reasons it makes sense to store the learning steps and repeat
them internally. This method is called Experience Replay.

N. Hendrich 86

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (2)

An experience e is a tuple

e = (s, s ′, a, r)

with s, s ′ ∈ S , a ∈ A, r ∈ IR. e represents a learning step, i.e. a
state of transition, where s the initial state, s ′ the goal state, a the
action, which led to the state transition, and r the reinforcement
signal that is obtained.

A learning path is a series e1 . . . eLk of experiences (Lk is the length
of the k-th learning path).

N. Hendrich 87

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (3)

The ER-Algorithm:

for k = 1 to N
for i = Lk down to 1

update(ei from series k)
end for

end for

N. Hendrich 88

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (4)

Advantages:

I Internal repetitions of stored learning steps usually cause far
less cost than new learning steps.

I Internally a learning path can be used in the reverse direction,
thus the information is spread faster.

I If learning paths cross, they can “learn form each other”, i.e.
exchange information. Experience Replay makes this exchange
regardless of the order in which the learning path was firstly
executed.

N. Hendrich 89

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay - Example

Progression of the Q̂-values when the learning path is repeatedly
run through:

N. Hendrich 90

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Backstep Punishment

Usually an exploration strategy is needed, that ensures a straightforward
movement of agents through the state space.
Therefore backsteps should be avoided.
An useful method seems to be, that in case the agent chooses a
backstep, the agent may carry out this step but an artificial, negative
reinforcement-signal is generated.
Compromise between the “dead-end avoidance” and “fast learning”.

In context of a goal-oriented learning an extended reward function could
look as follows:

rBP =


100 if transition to goal state

−1 if backstep

0 else

N. Hendrich 91

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Reward Distance Reduction

The reward function could perform a more intelligent assessment of the
actions. This presupposes knowledge of the structure of the state space.

If the encoding of the target state is known, then it can be a be good
strategy to reduce the Euclidean distance between the current state and
the target state.
The reward functions can be extended the way that actions that reduce
the Euclidean distance to the target state, get a higher reward. (reward
distance reduction, RDR):

rRDR =


100 if ~s ′ = ~sg

50 if |~s ′ −~sg | < |~s −~sg |
0 else

where ~s, ~s ′ and ~sg are the vectors that encode the current state, the

following state, and the goal state.
N. Hendrich 92

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Learner-Cascade

The accuracy of positioning depends on how fine the state space is
divided.
On the other hand the number of states increases with increasing
fineness of the discretization and therefore also the effort of
learning increases.

Before the learning procedure a trade-off between effort and
accuracy of positioning has to be chosen.

N. Hendrich 93

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Learner-Cascade - Variable Discretization

An example state space without discretization (a) with variable
discretization (b)

a) b)

This requires knowledge of the structure of the state space.

N. Hendrich 94

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Learner-Cascade - n-Stage Learner-Cascade

Divisions of the state space of a four-stage learner cascade:

1. learner: 2. learner:

3. learner: 4. learner:

N. Hendrich 95

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Q-Learning: Summary

I Q-Function

I Q-Learning algorithm

I convergence

I acceleration of learning

I examples

N. Hendrich 96

University of Hamburg

MIN Faculty

Department of Informatics

Applications in Robotics Reinforcement Learning (2)

Path Planning with Policy Iteration (1)

Policy iteration is used to find a path between start- and
goal-configuration.
The following sets need to be defined to solve the problem.

I The state space S is the discrete configuration space, i.e. every
combination of joint angles (θ1, θ2, . . . , θDim) is exactly one state of
the set S except the target configuration

I The set A(s) of all possible actions for a state s includes the
transitions to neighbor-configurations in the K-space, so one or more
joint angles differ by ±Dis. Only actions a in A(s) are included, that
do not lead to K-obstacles and do not exceed the limits of the
K-space

N. Hendrich 97

University of Hamburg

MIN Faculty

Department of Informatics

Applications in Robotics Reinforcement Learning (2)

Path Planning with Policy Iteration (2)

I Let Ra
ss′ be the reward function:

Ra
ss′ = Reward not in goal ∀s ∈ S , a ∈ A(s), s ′ ∈ S and

Ra
ss′ = Reward in goal ∀s ∈ S , a ∈ A(s), s ′ = st .

Only if the target state is reached a different reward value is
generated. For all other states there is the same reward.

I Let the policy π(s, a) be deterministic, i.e. there is exactly one
a with π(s, a) = 1

I A threshold Θ needs to be chosen, where the policy evaluation
terminates

I For the problem the Infinite-Horizon Discounted Model is the
best choice, therefore γ needs to be set accordingly.

N. Hendrich 98

University of Hamburg

MIN Faculty

Department of Informatics

Applications in Robotics Reinforcement Learning (2)

2-Joint Robot

The found sequence of motion for the 2-joint robot (left to right, top to

bottom):

N. Hendrich 99

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs

Normally a robot arm needs six DOFs to grasp an object from any
position and orientation.
To grasp virtually planar objects, we suppose that the gripper is
perpendicular to the table and its weight is known.
There still remain three DOFs to control the robot arm: parallel to
the table-plane (x , y) and the rotation around the axis
perpendicular to the table(θ).

N. Hendrich 100

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (2)

Control of x , y , θ. The pre-processed images will be centered for
the detection of the rotation.

N. Hendrich 101

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (3)

To achieve a small state space, learning will be distributed to two
learners:
one for the translational movement on the plane,
the other one for the rotational movement.
The translation-learner can choose four actions (two in x- and two in
y -direction).
The rotation-learner can choose two actions (rotation
clockwise/counterclockwise).
The partition has advantages compared to a monolithic learner:

I The state space is much smaller.

I The state-encoding is designed the way that the state-vectors contain
only the relevant information for the corresponding learner.

N. Hendrich 102

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (4)

In practice, the two learners will be used alternatingly. Firstly the
translation-learner will be run in long learning-steps, until it has reached
the goal defined in its state-encoding.
Then the translation-learner is replaced by the rotation-learner, which is
also used in long learning-steps until it reaches its goal.

At this time it can happen, that the translation-learner is disturbed by

the rotation-learner. Therefore the translation-learner is activated once

again. The procedure is repeated, until both learners reach their goal

state. This state is the common goal state.

N. Hendrich 103

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (5)

(a) (b) (c)

(d) (e) (f)

Position and orientation-control with 6 DOFs in four steps.

N. Hendrich 104

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (6)

To use all six DOFs, additional learners need to be introduced.

1. The first learner has two DOFs and its task is that the object
can be looked upon from a defined perspective. For a plane
table this typically means, that the gripper is positioned
perpendicularly to the surface of the table (a → b).

2. Apply the x/y learner (b → c).

3. Apply the θ rotation learner(c → d).

4. The last learner controls the height and corrects the
z-coordinate (d → e).

N. Hendrich 105

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Visually Guided Grasping using Self-Evaluative Learning

Grip is optimal with respect to local criteria:

I The fingers of the gripper can enclose the object at the
gripping point

I No slip occurs between the fingers and object

Grip is optimal with respect to global criteria:

I No or minimal torque on fingers

I Object does not slip out of the gripper

I The grasp is stable, i.e. the object is held rigidly between the
fingers

N. Hendrich 106

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Local and Global Criteria

(a) (b)

N. Hendrich 107

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Two approaches
One learner:

I The states consist of a set of m + n local and global properties:
s = (fl1 , . . . , flm , fg1 , . . . , fgn).

I The learner tries to map them to actions a = (x , y , φ), where x and y
are translational components in x- and y -direction and φ is the
rotational component around the approach vector of the gripper.

Two learners:

I The states for the first learner only supply the local properties
s = (fl1 , . . . , flm).

I The learner tries to map them to actions, that only consist of a
rotational component a = (φ).

I The second learner tries to map states of global properties
s = (fg1 , . . . , fgn) to actions concerning the translational component
a = (x , y).

N. Hendrich 108

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Setup

I Two-component learning system:

1. orientation learner 2. position learner

operates on local criteria operates on global criteria

equal for every object different for each new object

I Use of Multimodal sensors:
I Camera
I Force / torque sensor

I Both learners work together in the perception-action cycle.

N. Hendrich 109

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

State Encoding

θ

L D COA

θ

θ θ

2 1

3 4

The orientation Lerner uses length L as well as the angles
Θ1, . . . ,Θ4, while the position learner uses the distance D between
the center of the gripper-line and the optical center of gravity of
the object.

N. Hendrich 110

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Measures for Self-Evaluation in the Orientation Learner

Visual feedback of the grasp success:
Friction results in rotation or misalignment of the object.

N. Hendrich 111

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Measures for Self-Evaluation in the Position Learner (1)

Feedback using force torque sensor:
Unstable grasp – analyzed by force measurement

N. Hendrich 112

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Measures for Self-Evaluation in the Position Learner (2)

Suboptimal grasp – analyzed by torques

N. Hendrich 113

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

The Problem of Hidden States

Examples for incomplete state information:

a) b) c) d)

N. Hendrich 114

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Grasping mit RL: Barrett-Hand

I learn to grasp everyday objects with artificial robot hand

I reinforcement-learning process based on simulation

I find as many suitable grasps as possible

I support arbitrary type of objects
I efficiency

I memory usage
I found grasps/episodes

N. Hendrich 115

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

BarretHand BH-262

I 3-finger robotic hand

I open/close each finger independently

I variable spread angle

I optical encoder

I force measurement

N. Hendrich 116

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Applied model

States:

I pose of gripper to object

I spread angle of hand

I grasp tried yet

Actions:

I translation (x-axis, negative y-axis, z-axis)

I rotation(roll-axis, yaw-axis, pitch-axis)

I alteration of spread-angle

I grasp-execution

N. Hendrich 117

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Applied model (cont.)

Action-Selection:

I ε-greedy (highest rated, with probability ε random)

Reward-Function:

I reward for grasps depend on stability

I stability is evaluated by wrench-space-calculation (GWS)
(introduced 1992 by Ferrari and Canny)

I small negative reward if grasp unstable

I big negative reward if object is missed

r(s, a) =


−100 if number of contact points < 2
−1 if GWS(g) = 0
GWS(g) otherwise

N. Hendrich 118

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Learning Strategy

Problem: The state-space is extremely large

I TD-(λ)-algorithm

I learning in episodes
I episode ends

I after fixed number of steps
I after grasp trial

I Q-table built dynamically

I states are only included if they occur

N. Hendrich 119

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Automatic Value Cutoff

Problem: There exist many terminal states (grasp can be executed
every time)

I instable grasps are tried several times

I agent gets stuck in local minimum

I not all grasps are found

=⇒ No learning at the end of an episode - waste of computing
time
This can not simply be solved by adapting RL-parameters.

N. Hendrich 120

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Automatic Value Cutoff (cont.)

Automatic Value Cutoff: remove actions

I leading to instable grasps (if reward negative)

I that have been evaluated sufficiently

Q(s, a)←


Q(s, a) + α

[
r + γQ(s

′
, a

′
)− Q(s, a)

]
if 0 ≤ Q(s, a) < r ∗ β

remove Q(s, a) from Q otherwise

with 0 ≤ β ≤ 1. (we had good results with β = 0.95)

N. Hendrich 121

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Automatic Value Cutoff vs. no Cutoff

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

G
ri

ff
e

Episode

Box 1 − NCO
Box 1 − CO

Box 2 − NCO
Box 2 − CO

Cylinder − NCO
Cylinder − CO
Banana − NCO
Banana − CO

N. Hendrich 122

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Reinforcement Learning vs. Brute Force: Mug

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000

G
ra

sp
s

Episodes

Mug top − BF
Mug top − RL

Mug side − BF
Mug side − RL

N. Hendrich 123

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Reinforcement Learning vs. Brute Force: Telephone

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ra

sp
s

Episodes

Phone side − BF
Phone side − RL
Phone top − BF
Phone top − RL

N. Hendrich 124

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Experimental Results

Testing some grasps with the service robot TASER:

N. Hendrich 125

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Experimental Results (cont.)

Testing some grasps with the service robot TASER:

N. Hendrich 126

	Examples: Matlab
	
	Dynamic Programming
	Asynchronous Dynamic Programming
	Monte-Carlo Methods
	Temporal-Difference Learning: Q-Learning and SARSA
	Acceleration of Learning
	Applications in Robotics
	Grasping with RL: Parallel Gripper
	Grasping mit RL: Barrett-Hand

