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Abstract. Active vision systems, and especially foveated vision systems, depend on efficient attentional mecha- 
nisms. We propose that machine visual attention should consist of both high-level, context-dependent components, 
and low-level, context free components. As a basis for the context-free component, we present an attention operator 
based on the intuitive notion of symmetry, which generalized many of the existing methods of detecting regions of 
interest. It is a low-level operator that can be applied successfully without a priori knowledge of the world. The 
resulting symmetry edge map can be applied in various low, intermediate- and high- level tasks, such as extraction 
of interest points, grouping, and object recognition. In particular, we have implemented an algorithm that locates 
interest points in real time, and can be incorporated in active and purposive vision systems. The results agree with 
some psychophysical findings concerning symmetry as well as evidence concerning selection of fixation points. 
We demonstrate the performance of the transform on natural, cluttered images. 

1 Introduction 

Biological vision is foveated, highly goal oriented, and 
task dependent. This observation, which is rather clear 
if we trace the behavior of practically every verte- 
brate, is now being taken seriously into consideration 
by the computer vision community. This is evident 
from recent work on active vision systems and heads 
(Brunnstrome et al. 1992; Crowley 1991; Rimey and 
Brown 1992) and general active vision concepts and al- 
gorithms (Aloimonos et al. 1987; Bajcsy 1988; Aboot 
and Ahuja 1988; Ballard 1990; Culhane and Tsotsos 
1992). One of the fundamental features of active vision 
is the use of space-variant vision and sensors (Yeshurun 
and Schwartz 1989; Tistarelli and Sadini 1990; Rojer 
and Schwartz 1990), that allow, the case of the log- 
polar representation, data reduction as well as a certain 
degree of size and rotation invariance. 

The use of such sensors requires efficient mecha- 
nisms for gaze control, which are, in turn, directed by 
attentional algorithms. Using psychophysical terms, 
these algorithms are either overt, analyzing in detail 
the central foveated area, or covert, analyzing various 
regions within the field of view that are not necessarily 
in the central foveated area. 

Like many other issues in computational vision, the 
attention problem seems to be trapped in the typical 
top-down-bottom-up cycle, as well as in the global 

local cycle: global processes are necessarily based on 
local features and processes, whose crucial parameters, 
in turn, depend on global estimates. This is the case 
for recognition tasks, where, for example, thresholds 
and size tuning of local feature detectors are optimally 
determined by the model of the object of the system ex- 
pects. In curve and edge detection, local discontinuities 
are classified as signals or as noise according to global 
matching based on these very local estimates (Zucker et 
al. 1989). Similarly, attention is undoubtedly aconcur- 
rent top-down and bottom-up process: computational 
resources are assigned to regions of interest. But de- 
tection of regions of interest is both context dependent 
(top down), since the system is task oriented, and con- 
text free (bottom up), since one of the most important 
aspects of such a system is detection of unexpected sig- 
nals. Thus, attention must be based on highly coupled 
low-level and high-level processes. While we do not 
offer a solution to this fundamental problem, we pro- 
pose here to begin this cycle with a low-level attentional 
mechanism. 

Visual processes, in general, and attentional mecha- 
nisms, in particular, seem effort less for humans. This 
introspection, however, is misleading. Psychophysical 
experiments show that infants (age 1-2 months) tend 
for fixate around an arbitrary single distinctive feature 
ofthe stimulus, likethe cornerofatriangle. (Haith et al. 
1977; Salapatek and Kessen 1973). Moreover, when 
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presented with line drawings, children up to age 3-4 
spend most of their time dwelling only on the inter- 
nal details of a figure, and in general, children make 
more eye movements and are less likely than adults 
to look directly at a matching target in their first eye 
movements (Cohen 1981). 

In comparison, adults display a strong tendency to 
look directly at forms that are informative, unusual, or 
of particular functional value (Antes 1974; Loftus and 
Mackworth 1978). Thus, it seems that gaze control 
in adults is indeed task- and context-dependent, but it 
is probably based on natal (hardwired) low-level lo- 
cal and context-free attentional mechanisms. At first, 
only the low-level context-free mechanisms are avail- 
able. Gradually, as more information regarding the 
environment is being learned, higher-level processes 
take their place. 

Active vision definitely needs high-level, context- 
dependent attentional algorithms; but these should 
be adaptive, trainable algorithms based on acquired 
knowledge, that use lower-level context-free atten- 
tional modules. Considering the fact that this research 
area is rather new, we believe that robust and efficient 
low-level attentional algorithms are the basic building 
blocks for machine visual attention. Here, we present 
an attentional algorithm, that is context-free, does not 
depend on object segmentation, and seems to general- 
ize many of the existing cues used in previous com- 
puter vision models for detecting regions of interest. 
While some of the motivation for our work is based on 
psychophysical observations, and our results are also 
in good agreement with psychophysical data relating 
overt attention, we do not present here our work as a 
model for overt and covert human attention. 

2 Attentional Mechanisms in Computer Vision 

An early attentional operator based on grey-level vari- 
ance (Moravec 1977) is still being widely used in 
many systems. Other researchers suggested to mea- 
sure "busyness" the smoothed absolute value of the 
Laplacian of the data, rapid changes in the gray levels, 
and edge junctions (Brunnstrome et al. 1992). Fol- 
lowing early psychophysical findings (Attneave 1954; 
Cohen 1981), interest points can be regarded also as 
points of high curvature of the edge map (Lamdan et 
al. 1988; Yeshurun and Schwartz 1989). 

Instead of selecting one of these methods for each 
application, we show that they can all be derived 

from a more generalized concept, and suggest that 
local generalized symmetry is the principle underly- 
ing context-free attention. In addition, the operator 
we propose more closely fits psychophysical evidence, 
and it is more useful in detecting interesting features in 
complex scenes. 

Natural and artificial objects often give rise to the 
human sensation of symmetry. Our sense of symmetry 
is so strong that most man-made objects are symmet- 
ric, and the Gestalt school considered symmetry as a 
fundamental principle of perception. Looking around 
us, we get the immediate impression that practically 
every interesting area consists of a qualitative and gen- 
eralized form of symmetry. 

In computer vision research, symmetry has been sug- 
gested as one of the fundamental non-accidental prop- 
erties, which should guide higher-level processes. This 
sensation of symmetry is more general than the strict 
mathematical notion. For instance, a picture of a hu- 
man face is considered highly symmetric by the lay- 
man, although there is no strict reflectional symmetry 
between both sides of the face. 

Symmetry is being widely used in computer vision 
(Davis 1977; Nevatia and Binford 1977; Blum and 
Nagel 1978; Brady and Asada 1984; Atallah 1985; 
Bigun 1988; Marola 1989; Xia 1989; Zabrodsky et 
al. 1992). However, it is mainly used as a means 
of convenient shape representation, characterization, 
shape simplification, or approximation of objects that 
have been already segmented from the background. 
A schematic (and simplified) vision task consists of 
edge detection, followed by segmentation, followed by 
recognition. A symmetry transform is usually applied 
after the segmentation stage. We present a symmetry 
transform which is inspired by the intuitive notion of 
symmetry and assigns a symmetry magnitude and a 
symmetry orientation to every pixel in an image at a 
low-level vision stage which follows edge detection. 
Specifically, we compute a symmetry map, which is a 
new kind of an edge map, where the magnitude and 
orientation of an edge depends on the symmetry as- 
sociated with the pixel. Strong symmetry edges are 
natural interest points, while linked lines are symmetry 
axes. 

Since our symmetry transform can be applied im- 
mediately after the stage of edge detection, it can be 
used to direct higher-level processes, such as a seg- 
mentation and recognition, and can serve as a guide 
for locating objects. We shall now define the trans- 
form, and demonstrate these ideas on natural images. 
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Fig. 1. The contribution to symmetry of the gradients at Pi and pj .  

3 Definition of the Transform 

In the usual mathematical notion, an object is regarded 
symmetric if it is invariant to the application of cer- 
tain transformation, called symmetry operations. A 
typical symmetry operation is the well-known reflec- 
tional (mirror) symmetry. In order to use these sym- 
metry operations it is necessary to know the shape of 
an object before we can estimate whether it is sym- 
metric or not. However, the process of finding interest 
points must precede complex processes of detecting 
the objects in the scene. Even if the object's shapes 
are known, truly symmetric objects are rare in natural 
scenes, and therefore any attempt to formulate an in- 
terest operator based on the strict mathematical notion 
of symmetry is doomed to fail. 

Our symmetry transform does not require knowledge 
of the object's shape. It performs local operations on the 
edges of the image. Moreover, it assigns a continuous 
symmetry measure to each point in the image, rather 
than a binary symmetry label. 

We first define a symmetry measure of each point. 
Let Pk = (xk, Yk) be any point (k = 1 . . . . .  K), and 
denote by 

Vpx = Pk,  

the gradient of the intensity at point pk. We assume 

that a vector vk = (rk, Ok) is associated with each p~ 
such that rt = log(1 + IIVpk]l) and Oh = arctan(~pk/  

~Pk)- For each two points Pi and p j, we denote by 
1 the line passing through them, and by aij the angle 
counterclockwise between l and the horizon. We define 
the set l-'(p), a distance weight function Do(i, j) ,  and 
a phase weight function P(i, j )  as 

{ j )  Pi + Pj } 
F(p)  = (i, 2 = p 

1 

P(i, j )  = [1 - cos (0 /+  O i - 2oti])] 

x [1 - cos(0i - 0j)] 

We define the contribution of the points Pi and pj  as 

C(i, j )  ---- Do(i, j )P( i ,  j)rirj  

This measure can be easily normalized, and reflects the 
fact that each of its components modulates the other 
ones. The symmetry magnitude or isotropic symmetry 
M~ (p) of each point p is defined as 

Ma(p) = Z C( i , j )  
(i,j)6l'(p) 

which averages the symmetry value over all orienta- 
tions. We define the direction of the contribution of Pi 
a n d  p j  a s  

Oi + Oj 
qg(i, j)  = - -  

2 

A complementary definition for ~o(i, j )  is given in 
Section 6. 

The symmetry direction is defined as q~ (p) = ~0(i, j )  
such that C(i, j)  is maximal for (i, j )  6 F(p) .  Thus, 
the symmetry of the point p is defined as 

S~(p) = Imp(p) ,  ~b(p)] 

The demand that the symmetry transform be local 
is reflected by the Gaussian distance weight function, 
Do(i, j).  Different values for cr imply different scales, 
thus enabling convenient implementation of multires- 
olution schemes. Note that the Gaussian defined above 
has circular isotherms, i.e., it has no preferred orien- 
tation. However, one can also define Gaussians with 
elliptic isotherms. This is useful when the transform 
is applied as a feature detector of elliptic regions such 
as eyes in human faces (Reisfeld and Yeshurun 1992; 
Edelman et aI. t992). In the experimental results 
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Fig. 2. Two opposite situations with the same symmetry value. 

presented in this article we have used only circular 
Gaussians. 

The phase weight function, p(i, j )  is composed of 
two terms. The first term, 1 - cos(0/+ Oj - 2oqj), al- 
lows to achieve maximum symmetry when (Oi -c~ii) + 
(Oj - oqj) = Jr, i.e. when the gradients at Pi and pj 
are oriented in the same direction toward each other. 
This is consistent with the intuitive notion of symme- 
try. This expression decreases continuously as the situ- 
ation deviates from the ideal one. Notice that the same 
measure is achieved when the gradients are oriented 
toward each other or against each other. The first sit- 
uation corresponds to symmetry within a dark object 
on a light background, and the second corresponds to 
symmetr 7 within a light object on a dark background. 
It is easy to distinguish between the two cases. (See 
Fig. 2). One can simultaneously process both types of 
the transform obtaining two classes of interest points. 
However, for the simplicity of exposition, in all the 
experimental results presented in this article, we con- 
sider only the case of gradients facing each other (which 
correspond mainly to dark objects on a brighter back- 
ground). We emphasize that in general, both a dark and 
a bright object can be simultaneously detected. Obvi- 
ously, the amount of false alarms will increase, but the 
basic idea behind any interest operator is dimension- 
ality reduction: in the case of a 1000 by 1000 image, 
computational resources should be directed at, say, 102 
locations, instead of 106 . Thus, the increase in poten- 
tial regions of interest caused by including bright and 
dark symmetry peaks is not significant in our context. 

The second term of P(i,  j ) ,  1 - c o s ( 0 / -  Oj), is in- 
troduced because the first term attains its maximum 
whenever (Oi - u/j) + (Oj - ~d) = Jr. This includes 
the case 0/ - otij = Oj - oqj = Jr/2, which occurs 
on a straight edge, and which we do not regard as in- 
teresting. The current expression compensates for this 
situation. 

The term rirj is high when there is a strong corre- 
lation between two large gradients. We use gradients 
rather than intensities since we are mainly interested 
in edges that relate to object borders. For instance a 
uniform-intensity wall is highly symmetric but proba- 
bly not very interesting. In natural scenes, we prefer 

to use the logarithm of magnitude instead of the mag- 
nitude itself, since it reduces the differences between 
high gradients, and therefore the correlation measure 
is less sensitive to very strong edges. 

Note that the transform we have defined detects re- 
flectional symmetry, It is invariant under 2-D rotation 
and translation transformation. Moreover, it is quite 
effective in detecting skewed symmetry (Kanade and 
Kender 1983) as well. Since skewed symmetry results 
in an affine transformation of the 2-D picture, the mid- 
point of a segment and parallelism are conserved. Thus 
the location of the symmetry edge is preserved under 
skewed symmetry, but the direction of the symmetry 
edge should not be the average of the two directions. 
In Section 6 we give the precise derivation of the cor- 
rect direction. One should note, however, that since 
the weight of the direction prefers parallel edges, even 
the above defined direction will be still effective under 
skewed symmetry. 

Sometimes it is necessary to detect points that 
are highly symmetric in multiple distinct orientations 
rather then in a principal one. We define such a sym- 
metry as radial symmetry - R  S(p)  and its value can be 
evaluated using the formula 

RS~(p) = y ~  C(i, j )  sin2[rp(i, j )  - ~b(p)] 
(i,j)~F(p) 

This expression emphasizes contribution in direc- 
tions perpendicular to the main symmetry direction, 
and attains its maximum in a point that is surrounded 
by edges. Notice that due to the continuous nature 
of the operator, the radial symmetry is not sensitive to 
gaps in the contour that surrounds the point p, and does 
not require this contour to be uninterrupted. A prelim- 
inary definition of this symmetry form was suggested 
in (Reisfeld et al. 1990). 

Although the symmetry transform is presented here 
as a context-free mechanism, it can obviously use ad- 
ditional knowledge, if available. For example, if we 
look for a symmetry in a given direction, we define the 
symmetry projection at a point p and an orientation 
as 

P S i ( p ,  ~ )  = m~(p)cos[q~(p) - ~]  
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Fig. 3. A credit card, keys, and a hand, (a) Original image; (b) lsotropic symmetry map for small tr; (c) Nonmaximal suppression of (b) 
followed by thresholding. (d) Superposition of (a) and (c); (e) Isotropic symmetry map for large tr. Nonmaximal suppression of (e) followed by 
thresholding. (g) Superposition of (,'t) and (f); (h) Maximal values of the radial symmetry with large cr marked by crosses on the original image. 

The symmetry transform can thus be turned into an effi- 
cient feature detector. We have recently demonstrated 
this in Reisfeld et al. (1990), where the transform was 
used for detection of  facial features. 

The complexity of  our algorithm is relatively low. 
We first discuss serial implementation. Suppose the op- 
erator is applied to a picture composed on n pixels, and 
the Gaussians in the weight function almost vanish in 
radius r < ~ .  Each two pixels, whose distance is 
less than or equal to 2r, contribute a value which can 
be computed using look-up tables. Therefore the time 
complexity is O(nr2). 

Space complexity is small too. The results of the 
operator are the symmetry magnitude and symmetry 
orientation maps, each occupies n pixels. In addition, 
a temporary space for holding the maximal response is 
needed. For the radial symmetry, another n-pixels map 
is needed. 

The complexity of  a parallel implementation de- 

pends on the architecture. For an architecture where 
there is a processor allocated for each pixel and each 
processor is connected to its neighbors up to radius r, 
we can achieve maximal speed-up of  the algorithm and 
reduce time complexity to O(r  2) [with O(nr 2) mes- 
sages if no global memory is available]. If  we have 
at our disposal a sufficiently large neural network, we 
can easily implement the look-up table and summation 
operations needed and then perform the operation in 
constant time. A different realization by "cortical-like" 
elements would be closely related to the co-circularity 
detectors suggested by Zucker et al. (1989). 

4 Operation on Natural Images 

The symmetry transform can be applied successfully 
on intricate natural scenes. It should be emphasized 
that all the images in Figs. 4 -8  have been processed 
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Fig. 4. Two persons with flags. "lop: Original image (left) and the peaks of the radial symmetry marked by crosses. Bottom: Edge detection 
(left), isotropic symmetry (middle), radial symmetry (right). 

Fig. 5. Further processing the previous figure. Top: Area around the highest radial-symmetry peak in finer resolution and the peaks of the 
radial symmetry. Bottom: Edge detection (left), isotropic symmetry (middle), and radial symmetry (right). 
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Fig. 6. Two bears with reflections. Top: Original image and the peaks of the radial symmetry. Bottom (left to right): Edge detection, isotropic 
symmetry, and radial symmetry. 

Fig. 7. Further processing the previous figure. Top: Area around the highest radial symmetry peak in finer resolution and the peaks of the 
radial symmetry marked by crosses. Bottom (left to right): Edge detection, isotropic symmetry, and radial symmetry. 
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Fig. 8. The peaks of the radial symmetry marked on an image of F-15a Eagles. 

using the same parameters of the symmetry transform. 
Figure 3 demonstrates that the transform performance 
is not affect by the existence of several objects in the 
scene. One can also see that linking the strong sym- 
metry edges results in natural symmetry axes of the 
parts involved. Notice that the credit card is a skewed 
rectangle. 

Figure 4 demonstrate the processing of an image 
of two persons on a noisy background. Note that the 
faces of the persons are marked among the highest- 
symmetry peaks. Since the transform is designed to 
respond best to symmetric edges, this is not surprising. 
However, experimenting with many natural images, we 
have observed that, in spite of the context-free, low- 
level nature of the transform, it detects regions that 
humans would consider interesting. 

Zooming in on Fig. 4 at the vicinity of the high- 
est radial-symmetry peak, we demonstrate (Fig. 5) the 
results of applying the transform with exact the same 
parameters. The location of the strongest peaks of the 
radial symmetry transform are marked by crosses and 
are located on the eyes and mouth. This figure can also 
demonstrate the superiority of the symmetry transform 
over the direct search for dark blobs: such a search 
would mainly detect the hair, while we are interested 
in more intricated areas, which are designated by the 
local symmetric configuration of edges. 

Notice that the active-vision task typically involves 
exactly these steps: detecting an interest point, zoom- 
ing in (which is equivalent to modifying the scale 

parameter), and using the same transform to detect re- 
gions of interest at the next level. This is also the stage 
where higher processes could use the low-level mod- 
ules for feature and object detection. In this regard, it 
might be useful for a higher-level process to analyze 
in detail the scale-space patterns of the symmetry edge 
maps that are formed while zooming. 

Figures 6 and 7 have been processed in the same 
manner as Figs. 4 and 5 with exactly the same pa- 
rameters. Notice that this image includes many high- 
frequency edges (e.g., on the fur), yet the transform 
responds in a similar manner to Fig. 4, detecting the 
interesting objects on the coarse level, and the facial 
features on the fine level. This phenomenon should be 
further investigated, however, by analyzing the appro- 
priate scale space. 

Again, processing Fig. 8 with the same symme- 
try parameters as before, one can see the effectiveness 
of the symmetry transform in a different scene. Due 
to the continuous nature of the generalized symmetry 
transform, it gracefully degrades; and this is evident 
especially in cases of partial occlusion of symmetric 
objects, as can also be seen in this figure. Notice also 
that the same features are detected for the three fore- 
most planes, though their size varies considerably. 

Since symmetry is a powerful nonaccidental prop- 
erty, significant information can be extracted from the 
image, based on the symmetry map. In particular, one 
can attempt direct segmentation of an image based on 
a backward transform which detects the image edges 
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Fig. 9. Back projection of the symmetry. Top left to bottom right: Original image, lsotropic symmetry. Horizontal symmetry projection. The 
result of voting for the edges which contributed to high symmetry values. 

contributing to high symmetry. In Fig. 9 we show the 
result of ranking the edges according to their contribu- 
tion to the symmetry maps. [See Reisfeld of Yeshurun 
(1992) for more details.] The edges that had high sym- 
metry value can be used to segment the objects that 
were the source of this symmetry. 

5 Conclusion 

Stressing the role of low-level context-free attentional 
mechanisms, we have introduced a interest opera- 
tor that associates a symmetry magnitude and direc- 

tion with each pixel in an image. As opposed to 
previous paradigms the symmetry map is computed 
directly from the edge map of the image, without prior 
segmentation. 

The symmetry map can serve as an efficient low- 
level process for indexing attention to the regions that 
are likely to be of high interest in a picture. Other pro- 
cesses can then direct computational resources to these 
regions and interpret the data in them. The symmetry 
transform agrees with some psychophysical data and 
can be further investigated to find its relation to mod- 
els for human visual perception (Bonneh et al. 1993), 
and for indexing attention in biological vision, such as 
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Fig. 10. Mean spontaneous fixation positions for various figures, each subtending about 2 a visual angle on the retina, reported by Kaufman 
and Richards. The small dotted circles indicate the region in which 86% of the fixations occurs. 

Fig. 11. Applying the symmetry transform on a simple figure. Left to right Original image; its edges; isotropic symmetry with a large a; radial 
symmetry with the same cr; superposition of the isotropic symmetry with the edges--the skeleton detected; superposition of the radial symmetry 
with the edges (compare to previous figure); isotropic symmetry with a small c~--the corners detected; superposition of the fine symmetry with 
the edges. 

the models used by Posner and Peterson (1990) and by 
Ullman (1984). 

There are many psychophysical works investigat- 
ing humans ability to detect bilateral symmetry [e.g., 
Locher and Nodine (1986)]. It is accepted that humans 
are able to detect mirror symmetry and that symmetry 
detection has a local nature. However, there was al- 
most no link suggested between these capabilities and 
the choice of attention points. Kaufman and Richards 
(1969) studied spontaneous fixation tendencies of the 
eyes when they are confronted with very simple forms. 
Fig. 10 shows the results for a collection of nine small 
figures. These results hold for forms that subtend less 
than 5 ° on the retina. As the forms become larger, fixa- 
tion becomes scattered. Thus, it seems that the natural 
fixation mechanisms has a local nature. These results 
are in intriguing agreement with the results of apply- 
ing the symmetry transform to similar forms. As an 
example, consider the square in Fig. 11. 

Another result, that might be more directly related to 
our operator, shows that symmetric patterns are more 
efficient in attracting attention (Locher and Nodine 
1986). It was found that when symmetric patterns were 
presented to subjects, both the survey and examination 
fixations were concentrated along the axes of symme- 
try. It is interesting to note that in this research, subjects 
were shown abstract art works in order to eliminate 
context. 

Some psychophysical findings (Attneave 1954; 
Kaufman and Richards 1969) lead to the assumption 
that interest points can be regarded also as points of 
high curvature. However, using the symmetry trans- 
form at low resolution results in detection of points 
with high curvature (as shown in Fig. 11). This is 
partially due to the fact that the symmetry axis passes 
through the points with maximal curvature (Yuille and 
Leyton 1990). 

Our operator generalizes most of the existing meth- 
ods for detection of interest points. The symmetry- 
transform value is high near points of high curvature, 
since the edges that construct the high curvature are 
highly symmetric according to our definition. This 
is in agreement with the theoretical analysis of Yuitle 
and Leyton (1990), which shows that axes of symme- 
try terminate at maximal curvature points. Corners also 
give rise to high symmetry values, since they consist 
of edges that point toward each other. Busyness mea- 
sures can also be regarded as a rough estimate of the 
symmetry transform, since both are influenced by edge 
intensities. Note that busyness is insensitive to orien- 
tatidn, and thus will yield poor results in noisy scenes. 
Since most symmetry axes of an object pass through 
its center of gravity, the symmetry transform, and es- 
pecially its radial form, highly responds to the center 
of gravity. However, as opposed to methods based on 
center of gravity, our operator does not require any 
segmentation or specification of the object's vertexes. 

There is, however, much more to attention than sim- 
ple, context-free mechanisms. As we have argued, at- 
tention, like almost every other visual task, is trapped 
in the local-global, top-down- bottom-up, and context- 
free-context-dependent vicious circle. A possible path 
to follow should consist of a three-level paradigm: 

• A context-free direct computation of a set of simple 
and early mechanisms, like color, motion, or the 
generalized symmetry. 

• An analysis of the geometry of this early map, based 
on general and task-dependent knowledge. 

• A conventional object detection and recognition 
(Lamdan et al. 1988) performed only in locations 
indexed by the previous stages. 

This approach is not necessarily bottom up, as it 
seems to be on first sight, since the specific set of 
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context-free features used in the lower level could be 
selected and modified by the higher levels, once a spe- 
cific task is performed. These modifications can in- 
clude, for example, use of nonsymmetrical (oriented) 
Gaussians in the lower level, specification of the ap- 
propriate combination of dark and bright symmetries, 
and the use of the symmetry projection. In the higher 
levels, the symmetry-edge map obtained by the lower 
level can be operated on as an edge map applying stan- 
dard computer-vision tools. In particular, one can ap- 
ply a Hough transform for line detection, thus detecting 
significant straight-symmetry axes. By applying other 
standard edge-linking procedures, one obtains all the 
symmetry axes in the image, which may be curved. 
Another analysis that can be useful at this stage is a 
detailed analysis of the scale space formed by the sym- 
metry maps while zooming in. 

The approach could be demonstrated, for example, 
in the task of detecting persons and facial features in 
images. We first compute the context-free general- 
ized symmetry map, and then we look for a geometric 
pattern where the symmetry peaks are vertically ar- 
ranged, below a circular symmetry peak (persons), or 
three symmetry peaks that form a triangle (facial fea- 
tures). Indexed locations could then be specifically 
analyzed by edge-based or intensity-based recognition 
schemes. 

Our main point in this work, was to propose a scheme 
for the first level of the intricated process of attention, 
that generalizes most of the existing methods. The ap- 
proach is stable, is proved to work on real, cluttered 
images, can tolerate partial occlusion of objects, can 
be implemented in real time, and thus is a promising 
method for early vision-attentional mechanisms in pur- 
posive and active vision systems. 

therefore we have defined the symmetry orientation to 
be (Oi + 0 i ) / 2  even in the nonideal case. Note that this 
definition is invariant under translation, rotation, and 
change of scale (similarity transformation). 

A perspective image of an ideal symmetric object 
is in general nonsymmetric. Thus, one would like to 
define a symmetry transform that is invariant to the per- 
spective transformation. A common approximation to 
the perspective transformation is the affine transfor- 
mation. This kind of symmetry is known as skewed  
symmetry (Kanade and Kender 1983). 

Let us consider first the position of a skewed- 
symmetry edge. Since a midpoint of a segment is an 
affine invariant, the position is the same as in the pre- 
vious case. The definition of a skewed-symmetry edge 
orientation is, however, different. It follows from basic 
trigonometric considerations (Reisfeld 1994) that the 
natural skewed-symmetry edge orientation is 

q)(i, j )  = arctan 
2 cos (Oi - cei,,i ) cos (0.i - Oil, j )  

sin(0/+ Oj - 2eel, i) 

where oti i is defined as in Section 3. One may need to 
add zr to be consistent with the ideal case. 
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6 Appendix: Direction of the Skewed Symmetry 
Edges 

Consider an ideal object that possesses a reflectional 
symmetry. Let Pi and pj  be two contour points which 
are mirror symmetric with respect to the (symmetry 
axis) point p. Then, p = (Pi + p j)~2.  Let 0 i and 
0j be the orientation of the gradients at pi and p j  re- 
spectively, then Oi + O i = 3r, and the direction of the 
symmetry axis at p is (Oi + 0 i ) /2 .  The generalized- 
symmetry transform presented here provides a contin- 
uous measure of symmetry and is designed also for 
cases where 01 + 02 • 7t'. We have not assumed any 
cause for the deviation from the ideal situation, and 
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