An Example Memory Hierarchy

Caches

Cache: A smaller, faster storage device that acts as a staging area for a subset of the data in a larger, slower device.

Fundamental idea of a memory hierarchy:

For each k, the faster, smaller device at level k serves as a cache for the larger, slower device at level k+1.

Why do memory hierarchies work?

- Programs tend to access the data at level k more often than they access the data at level k+1.
- Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.
- Net effect: A large pool of memory that costs as much as the cheap storage near the bottom, but that serves data to programs at the rate of the fast storage near the top.

Caching in a Memory Hierarchy

General Caching Concepts

General Caching Concepts

Types of cache misses:

- Cold (compulsary) miss
 - Cold misses occur because the cache is empty.
- **Conflict miss**
 - Most caches limit blocks at level k+1 to a small subset
 - (sometimes a singleton) of the block positions at level k.
 - E.g. Block i at level k+1 must be placed in block (i mod 4) at level k+1.
 - Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block.
 - **E.g.** Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss

Occurs when the set of active cache blocks (working set) is larger than the cache.

Examples of Caching in the Hierarchy

Cache Type	What Cached	Where Cached	Latency (cycles)	Managed By
Registers	4-byte word	CPU registers	0	Compiler
TLB	Address translations	On-Chip TLB	0	Hardware
L1 cache	32-byte block	On-Chip L1	1	Hardware
L2 cache	32-byte block	Off-Chip L2	10	Hardware
Virtual Memory	4-KB page	Main memory	100	Hardware+ OS
Buffer cache	Parts of files	Main memory	100	OS
Network buffer cache	Parts of files	Local disk	10,000,000	AFS/NFS client
Browser cache	Web pages	Local disk	10,000,000	Web browser
Web cache	Web pages	Remote server disks	1,000,000,000	Web proxy server