

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

J. Zhang

zhang@informatik.uni-hamburg.de

Universität Hamburg Fachbereich Informatik

AB Technische Aspekte Multimodaler Systeme

10. Januar 2003

10. Januar 2003

Wie rechnet ein Rechner?	Rechnerstrukturen	Beschreibungsebenen	Motivation	"Moore's Law"	2. Einführung in die Rechnerarchitektur	1. Allgemeine Informationen .	Inhaltsverzeichnis	T A Arbeitsbereich TAMS MIS Fachbereich Informatik
					nitel			
					tur			
								≤
								les
٠	•	•	•	•	•	•		
:								굕
								chne
:	:	:	:	:	:	:		ersti
								ř.
٠	٠					٠		ure
:								, -
								⊕:
31	22	12	9	6	4	ω		€
								Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

10. Januar 2003

Kapitel: Allgemeine Informationen

Allgemeine Informationen

Vorlesung (1): Di. u. Do. 10:00 c.t - 11:00 Pause: 11:00 - 11:10

Vorlesung (2):

11:10 - 11:55

Raum: Web:

http://tams-www.informatik.uni-hamburg.de/lehre/

Prof. Dr. Jianwei Zhang

E-mail: Büro: Sprechstunde:

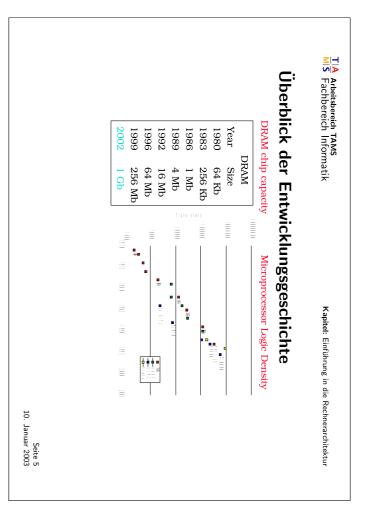
Name:

zhang@informatik.uni-hamburg.de Donnerstag 15:00 - 16:00 Tatjana Tetsis

Büro: Sekretariat:

E-mail: tetsis@informatik.uni-hamburg.de

Seite 3 10. Januar 2003


Kapitel: Einführung in die Rechnerarchitektur

Einführung in die Rechnerarchitektur

Rapide sich veränderndes Gebiet:

- Vakuum Röhre Transistor IC VLSI
- verdoppelt sich alle 1,5 Jahre ("Moore's Law"):
- Speicherkapazität
- Prozssorgeschwindigkeit (durch Fortschritt in der Technologie und der Organisation)

Seite 4 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: "Moore's Law"

"Moore's Law"

Umgangssprachliche Formulierung:

Bei konstanten Kosten verdoppelt sich die Rechenleistung eines Mikroprozessors alle 18 Monate.

Bemerkungen:

- Moores Vermutung bestätigt sich seit 1975.
- Moores ursprüngliche Aussage betrifft die Steigerungsrate für die Anzahl der Schaltkreise auf einem Chip.
- Moores Vermutung wird allgemein als "Moore's Law" bezeichnet.

Seite 6 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: "Moore's Law"

"Moore's Law" - Formel

 $L(t) = L(0) \times 2^{t/18}$

Die Zeit t wird in Monaten gemessen.

L(t) = Leistung zum Zeitpunkt t.

L(0) = Leistung zum Zeitpunkt 0.

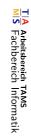
Einige Formelwerte:

Jahr 1: Jahr 2: Jahr 3: Jahr 5: Jahr 6: Jahr 7: Jahr 8: 1,5874 2,51984

10,0794

16 25,3984 40,3175

Seite 7 10. Januar 2003


TIA Arbeitsbereich TAMS
MIS Fachbereich Informatik

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: "Moore's Law"

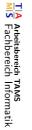
Leistungssteigerung der Spitzenrechner seit 1993

5.104	35.610	Earth Simulator, NEC	2002
7.424	7.226	ASCI White, IBM (SP Power 3)	2001
7.424	4.903	ASCI White, IBM (SP Power 3)	2000
9.632	2.379	ASCI Intel Red (Pentium II Xeon)	1999
5.808	2.144	ASCI Blue-Pacific (IBM SP 640E)	1998
9.152	1.338	Intel ASCI Red (200 MHz Pentium Pro)	1997
2.048	368	Hitachi CP-PACS	1996
6.768	281	Intel Paragon XP/S MP	1995
6.768	281	Intel Paragon XP/S MP	1994
140	124	Fujitsu NWT	1993
Prozessoren	in Gflop/s		
Zahl der	Linpackleistung	Rechner	Jahr

Seite 8 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Motivation

Motivation


Was Sie lernen werden:

- wie Computer funktionieren, als grundlegende Basis
- wie man ihre Leistung analysiert (und wie nicht)
- Fragen moderner Prozessoren (Caches, Pipelines)

Warum sollte man diese Dinge lernen?

- Sie wollen Computerwissenschaftler werden
- Sie wollen Software entwickeln, die praktisch genutzt wird (daher brauchen wir Leistung)
- Hardware wird immer enger mit Software als Embedded Systems gekoppelt
- Sie müssen Verkaufsentscheidungen treffen oder einen "Expertenrat" abgeben

Seite 9 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Motivation

Bereiche der Technischen Informatik

Mechatronik, Robotik, Echtzeit-Regelung, Prozeßrechentechnik, Embedded-Systems. Der Rest liegt in Anwendungsfeldern der Mikroelektronik.

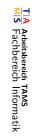
Seite 10 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Motivation

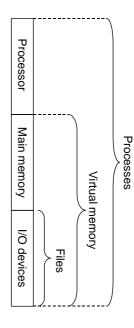
Motivation - 2

Was zieht uns an:

- Veränderung
- Es ist aufregend
- Es wird noch aufregender
- Große Bedeutung für alle anderen Aspekte der E-Technik und Informatik


Seite 11 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Beschreibungsebenen


Beschreibungsebenen - eine Schichten-Ansicht

- Hardware	7	I/O devices	Main memory	Processor
			Operating system	
Software	$\overline{}$	is	Application programs	

Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Beschreibungsebenen

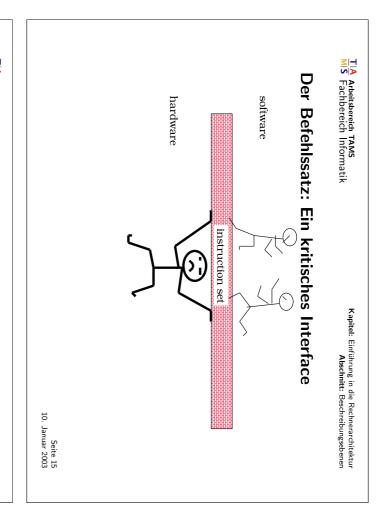
Von einem Betriebssystem gelieferte Abstraktionen

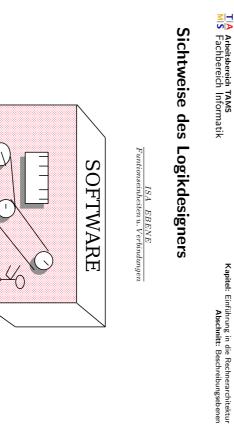
Seite 13 10. Januar 2003

TIA Arbeitsbereich TAMS MIS Fachbereich Informatik

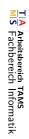
Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Beschreibungsebenen

Befehlssatzarchitektur: Instruction Set Architecture (ISA): die vom Programmierer betrachteten Attribute der konzeptionellen Struktur


Befehlssatzarchitektur (ISA)



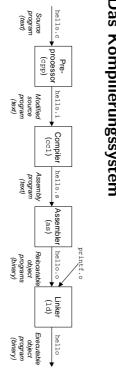
+ des funktionellen Verhaltens, die beinhalten:


- Organisation des programmierbaren Speichers
- Datentypen und Datenstrukturen: Codierungen und Darstellungen
- Befehlssatz
- Befehlsformate
- Modelle für Befehls- und Datenzugriffe
- Ausnahmebedingungen

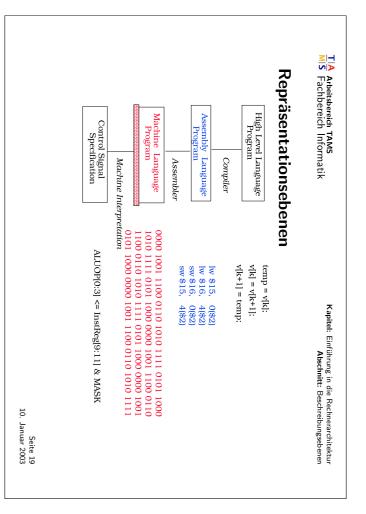
Seite 14 10. Januar 2003

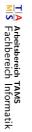
Seite 16 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Beschreibungsebenen


Beispiele für Befehlssatzarchitekturen

Seite 17 10. Januar 2003

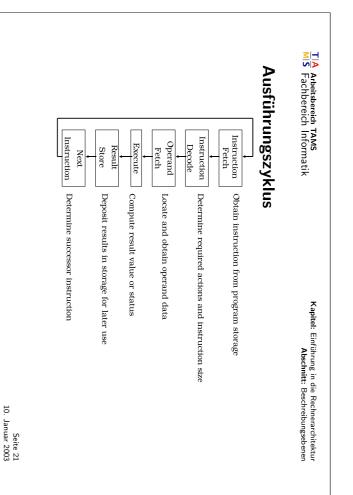


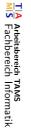

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Beschreibungsebenen

Das Kompilierungssystem

Seite 18 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Beschreibungsebenen


Assembler

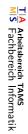

In Assembler werden Sie selten ein Programm schreiben müssen.

Verständnis des Ausführungsmodells auf der Maschinenebene: Das Verständnis des Assemblers ist unerlässlich für das

- Programmverhalten bei Fehlern
- Das High-Level Sprachmodell ist dort nicht anwendbar
- Die Programmleistung verstärken
- Die Ursachen für Programm-Ineffizienz verstehen
- Systemsoftware implementieren
- Der Compiler hat den Maschinencode als Ziel
- Die Betriebssysteme müssen den Prozesszustand verwalten

Seite 20 10. Januar 2003

Rechnerstrukturen


Bestandteile eines Rechners:

- Input (Maus, Keyboard)
- Output (Bildschirm, Drucker)
- Speicher (Laufwerke, DRAM, SRAM, CD)
- Netzwerk

Unser primärer Schwerpunkt: der Prozessor (Datenpfad und Kontrolle)

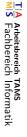
- wird mit Hilfe von Millionen Transistoren implementiert
- ist unmöglich durch die Untersuchung jedes einzelnen Transistors zu verstehen
- Wir brauchen...

Seite 22 10. Januar 2003

Rechnerstrukturen - Weitere Betrachtung

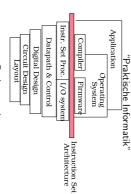
Rechnerstrukturen =

- Rechnerarchitektur
- Implementierung


Rechnerarchitektur =

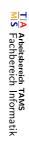
- Schnittstelle zwischen Rechner und Benutzer =
- Befehlssatzarchitektur
- Maschinenorganisation

Implementierung


- Hardware-Aufbau von Komponenten, die die Rechnerarchitektur realisieren
- Speichereinheiten, Recheneinheiten, Verbindungssysteme,...

Seite 23 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Rechnerstrukturen


Was umfasst der Begriff Rechnerstrukturen?

Rechnerstrukturen

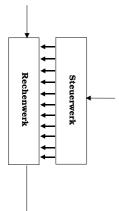
- Koordination vieler Abstraktionsebenen der Beschreibung
- Berücksichtigung ständig wechselnder äußerer Einflüsse
- Entwurf, Leistungsmessung, Leistungsbewertung

Seite 24 10. Januar 2003

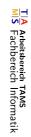
Maschinenorganisation

- Fähigkeiten und Leistung der prinzipiellen Funktionseinheiten
- ♦ (z.B., Registers, ALU, Shifters,...)
- Verbindungen zwischen diesen Einheiten
- Informationsfluss zwischen den Komponenten
- Logik und Methoden zur Realisierung des Informationsflusses
- "Choreographie" der Funktionseinheiten
- Beschreibung auf Register-Transfer-Ebene (Register Transfer Level (RTL))

Seite 25 10. Januar 2003



Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Rechnerstrukturen


von Neumann Architektur

Charakteristika:

- 1. Daten und Befehle liegen im gleichen Schreib-Lese-Speicher.
- Der Zugriff auf Speicherinhalte erfolgt über die Adresse der Speicherzelle, Speicherinhalte sind nicht typisiert.
- 3. Die Programmausführung erfolgt sequentiell, Befehl für Befehl.

Seite 26 10. Januar 2003

Treibende Kräfte auf Rechnerstrukturen

- Technologie
- Anwendungen
- Programmiersprachen
- Betriebssysteme
- Geschichte

Seite 27 10. Januar 2003

TIA Arbeitsbereich TAMS
MIS Fachbereich Informatik

Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Rechnerstrukturen

Technologie


- Gegen 1985 enstehen Ein-Chip 32-Bit Prozessoren und Single-Board-Computer
- Workstations, PCs, Multiprozessoren basieren seither auf dieser Technik
- Mit den neu auf dem Markt erscheinenden Prozessoren ist Mainframe-Leistung auf einem Chip verfügbar

Seite 28 10. Januar 2003

Technologiebedingtes Wachstum in Zahlen

- Prozessor
- ♦ Transistorzahl: ca 30% pro Jahr (heute ca. 100 Mio.)
- ♦ Taktrate: ca 20 % pro Jahr
- Speicher
- ♦ DRAM Kapazität: ca 60% pro Jahr (4x alle 3 Jahre)
- ◆ Zugriffsgeschwindigkeit: ca. 10 % pro Jahr
- ♦ Kosten pro Bit: sinken um ca. 25% pro Jahr
- Plattenspeicher
- ♦ Kapazitätssteigerung: ca. 60% pro Jahr

Seite 29 10. Januar 2003



Kapitel: Einführung in die Rechnerarchitektur
Abschnitt: Rechnerstrukturen

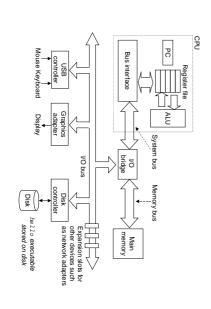
Beispiel: Der PowerPC 7540 (G4)

 U_{int} Leistung $U_{I/O}$ Bus Interface Busfrequenz Geschwindigkeit bis 1,2 GHZ L1 Cache Performance Prozess L2 Cache 1,8V / 2,5 V 21,3 W / 1 GHz 64 Bits 32/32 kByte $0,18~\mu\mathrm{m}$ MPS @ 1GHz 2280 Drystone 1,3 - 1,6V 256 kByte 133 MHz

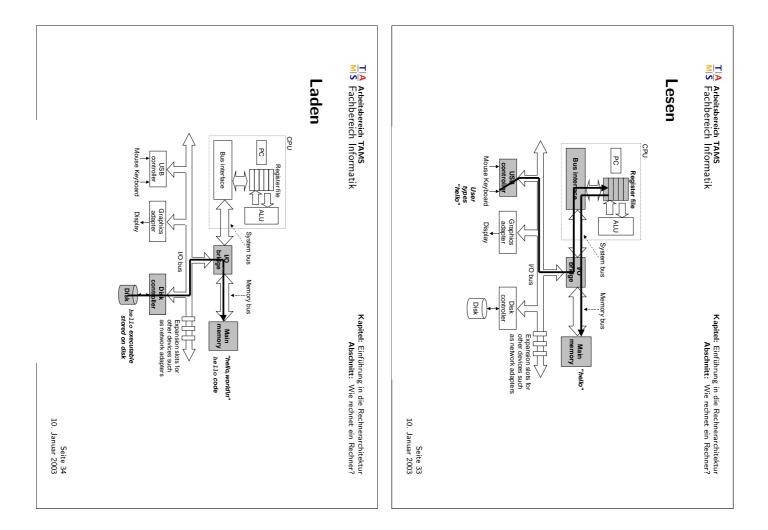
Seite 30 10. Januar 2003

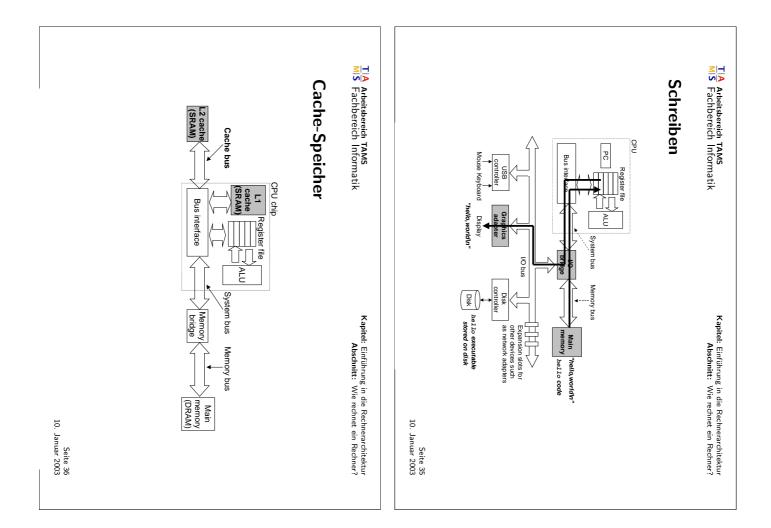
Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Wie rechnet ein Rechner?

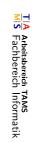
Wie rechnet ein Rechner?


- Datenpfad und Steuerwerk
- Choreografie der Funktionseinheiten
- Caches und Speicherhierarchien
- Wie man Daten sicher verwahrt
 Ein-/Ausgabe und Netzwerke
- "Hello World" Wie man mit Rechnern kommuniziert

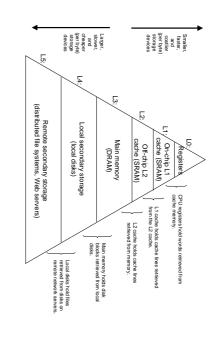
Seite 31 10. Januar 2003




Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Wie rechnet ein Rechner?


Hardwareorganisation eines typischen Systems

Seite 32 10. Januar 2003



Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Wie rechnet ein Rechner?

Beispiel einer Speicher-Hierarchie

Seite 37 10. Januar 2003

TIA Arbeitsbereich TAMS
MIS Fachbereich Informatik

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Wie rechnet ein Rechner?

Der Speicher ist wichtig

- Der Speicher ist nicht unbegrenzt
- Er muss zugeteilt und verwaltet werden.
- ♦ Viele Anwendungen werden vom Speicher dominiert.
- Fehler, die auf den Speicher verweisen, sind besonders gefährlich
- Auswirkungen sind sowohl zeitlich als auch räumlich entfernt
- Speicherleistung ist nicht gleichbleibend
- ♦ Cache und Virtual Memory Auswirkungen können die Programmleistung stark beeinflussen
- ♦ Die Anpassung des Programms an das Speichersystem kann die Geschwindigkeit bedeutend verbessern

Seite 38 10. Januar 2003

Kapitel: Einführung in die Rechnerarchitektur Abschnitt: Wie rechnet ein Rechner?

Ergänzende Literatur

Zur Rechnerarchitektur (1. Teil)

Literatur

- [1] Randal E. Bryant and David O'Hallaron. *Computer Systems*. Pearson Education, Inc., New Jersey, 2003.
- [2] David A. Patterson and John L. Hennessy. Computer Organization and Design. The Hardware / Software Interface. Morgan Kaufmann Publishers, Inc., San Francisco, 1998.
- [3] Andrew S. Tanenbaum. *Computerarchitektur*. Pearson Studium München, 2006.

Seite 39 10. Januar 2003