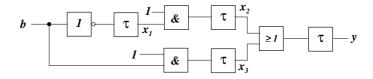
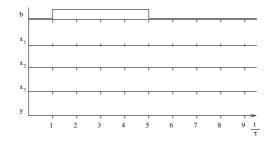

WS 2004/05	Übungen	Aufgabenblatt 5
	Technische Informatik 1 (T1)	

Aufgabe 5.1 Minimierung (4 Punkte)

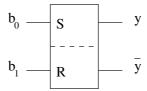

Bestimmen Sie aus dem angegebenen KV-Diagramm die minimierte DNF.

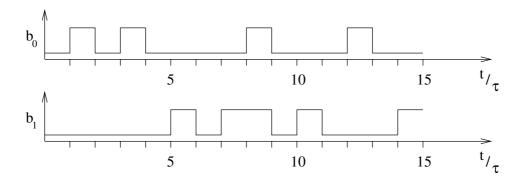
Aufgabe 5.2 Hazards (4 Punkte)


Untersuchen Sie die folgende Schaltung auf Hazards:

$$b \xrightarrow{I} x_1 & x_2 \\ \downarrow I & \downarrow x_3 \\ \downarrow I & \downarrow X_4 \\ \downarrow I & \downarrow X_3 \\ \downarrow I & \downarrow X_4 \\ \downarrow I & \downarrow X_4 \\ \downarrow I & \downarrow X_5 \\ \downarrow I & \downarrow X$$

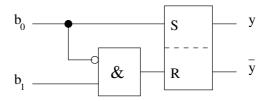
Nehmen Sie an, dass alle Gatter die gleiche Signallaufzeit τ haben und keine Laufzeiten auf den Verbindungsleitungen vorhanden sind:


- a) Tragen Sie die Signallaufzeiten in die Schaltfunktion $y(t) = b(t ...) \vee \overline{b}(t ...)$ ein.
- b) Zeichnen Sie in das vorgegebene Impulsdiagramm die Signalverläufe für die Ausgänge x_1 bis x_4 und y ein, wenn am Eingang b einRechteckimpuls der Dauer 4τ angelegt wird.

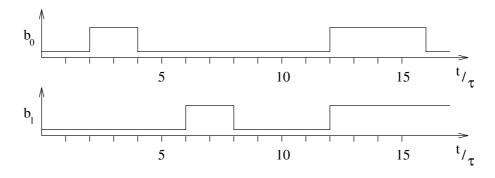

c) Klassifizieren Sie den Hazard, der am Ausgang y entsteht.

Aufgabe 5.3 RS-Flipflop (2 Punkte)

a) Gegeben ist ein RS-Flipflop:



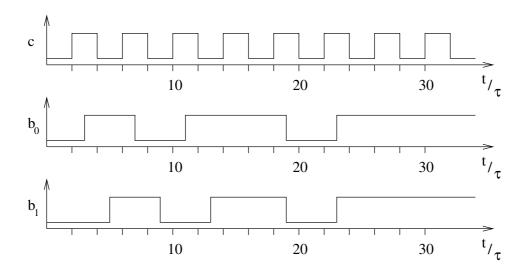
Die Eingangssignale b_0 und b_1 haben den folgenden Zeitverlauf:



Geben Sie das Impulsdiagramm für die Ausgangssignale y und \overline{y} an; für $t/\tau=0$ sei das Flipflop zurückgesetzt.

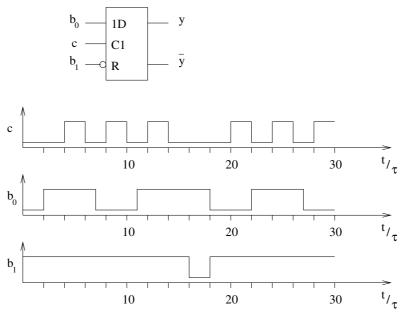
b) Der R-Eingang des RS-Flipflops wird wie folgt beschaltet:

Die Eingangssignale haben nun den folgenden Verlauf:

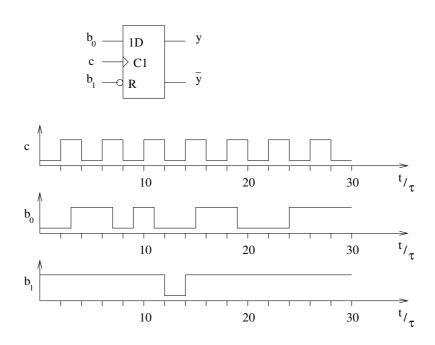

Geben Sie wiederum den Zeitverlauf der Ausgangssignale an; der Anfangszustand entspricht dem in a).

c) Worin unterscheiden sich die Schaltungen in a) und b)?

Aufgabe 5.4 JK-Flipflop (2 Punkte)


Gegeben ist ein einflankengesteuertes JK-Flipflop, welches bei der abfallenden Taktflanke schaltet:

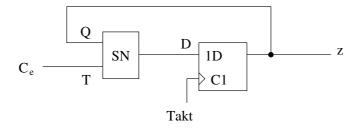
Bestimmen Sie den Verlauf der Ausgangssignale bei dem gegebenen Impulsdiagramm für die Eingangssignale; das Flipflop sei zu Beginn zurückgesetzt. Die Setz- und Haltezeiten werden in allen Ausgabenpunkten eingehalten.



Aufgabe 5.5 D-Flipflop (2 Punkte)

a) Gegeben ist ein taktzustandsgesteuertes D-Flipflop mit dem angegebenen Verlauf der Eingangssignale. Ergänzen Sie das Impulsdiagramm um die Ausgangssignale, wenn zu Beginn das Flipflop zurückgesetzt ist.

b) Betrachten Sie nun ein einflankengesteuertes D-Flipflop. Bestimmen Sie wiederum die Zeitverläufe an den Ausgängen, wobei Sie annehmen können, dass die Setz- und Haltezeiten berücksichtigt werden.


Aufgabe 5.6 4-Bit Binärzähler (6 Punkte)

Entwickeln Sie einen synchronen 4-Bit Binärzähler mit D-Flipflops. Bezeichnen Sie die Zustandsvariablen mit $(z_3z_2z_1z_0)$. Sehen Sie einen Eingang 'Counter Enable' und einen Ausgang zur Anzeige des Überlaufs vor.

Das D-Flipflop ist durch folgende Übergangstabelle spezifiziert:

$$\begin{array}{c|c} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \end{array}$$

Mit einem D-Flipflop und einem Schaltnetz (SN) vor dem D-Eingang

lässt sich ein 1-Bit-Zähler mit einem Eingang 'Counter Enable' (C_e) realisieren, der folgender Übergangstabelle genügt:

C_e	Q	Q_{n+1}
0	0	0
0	1	1
1	0	\overline{Q}_n
1	1	\overline{Q}_n

a) Vervollständigen Sie zuerst die Funktionstabelle des Schaltnetzes:

T	Q	D
0	0	
0	1	
1	0	
1	1	

- b) Wie lässt sich mit vier solcher 1-Bit-Zähler der synchrone 4-Bit-Zähler realisieren?
- c) Versuchen Sie eine Bedingung für Zustandswechsel (Toggle) der Zählerbits z_3, z_2, z_1, z_0 zu formulieren. Schauen Sie sich dazu noch mal genau Zählen im Dualsystem an. Wann wechselt ein Zählerbit?