

Vorlesung: Einführung in die Robotik

Prof. J. Zhang

zhang@informatik.uni-hamburg.de

Universität Hamburg

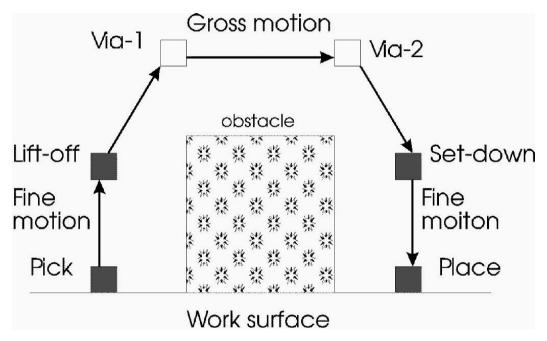
Fachbereich Informatik
AB Technische Aspekte Multimodaler Systeme

11. November 2004

Inhaltsverzeichnis

3. Trajektoriegenerierung
Generierung von Trajektorien
Trajektorien im multidimensionalen Raum
Kubische Polynome zwischen zwei beliebigen Konfigurationen
Lineare Funktion mit parabolischen Übergängen
Bestimmung der Geschwindigkeiten bei den Zwischenpunkte
Faktoren für zeitoptimale Bewegungen - Bogenlänge
Faktoren für zeitoptimale Bewegungen - Krümmung
Faktoren für zeitoptimale Bewegungen - Bewegungszeit
Dynamische Constraints aller Gelenke
Probleme der Trajektoriengenerierung im Kartesischen Raum
Bewegung entlang einer geraden Linie

"Pick-and-Place"-Operation und ihre Randbedingunger



(via points: Zwischenpunkte)

- (a) "Pick": Position (gegeben), Geschwindigkeit und Beschleunigung (gegeben, normal Null)
- (b) "Lift-off": stetige Bewegung bei den Zwischenpunkten
- (c) "Set-down": gleich wie (b)
- (d) "Place": gleich wie (a)

Kapitel: Trajektoriegenerierung **Abschnitt:** Generierung von Trajektorien

Generierung von Trajektorien - I

Aufgabe:

Berechne, interpoliere oder approximiere die erwünschte Bahn mit eine Menge von stetigen Funktionen bezüglich der Zeit, um den Roboter von einem Startpunkt zu einer Zielpunkt steuern zu können.

Die Start- und Zielpunkte können mit Weltkoordinaten oder Gelenkkoordinaten spezifiziert werden.

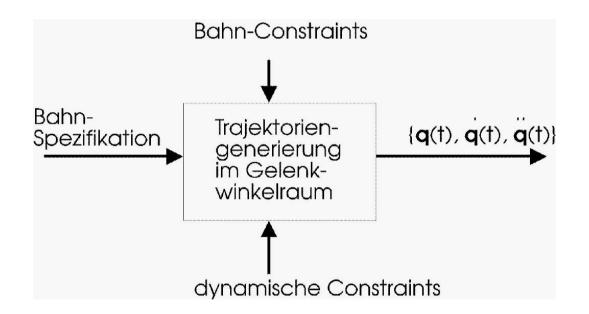
Zwei Strategien für die Lösung:

Die Trajektoriengenerierung wird durchgeführt im

- Kartesischen Raum:
 - ♦ nähere Aufgabenstellung
 - Möglichkeit für Kollisionvermeidung

Generierung von Trajektorien - II

- Gelenkwinkelraum:
 - ♦ Die geplanten Trajektorien unmittelbar ausführbar
 - ♦ Keine Berechnung der inversen Kinematik nötig
 - ♦ Berücksichtigung von Grenzwerten



Trajektorien im multidimensionalen Raum

Untersucht wird der Zeitverlauf der Position, Geschwindigkeit und Beschleunigung aller Gelenke.

Die **Trajektorie** auf einem Freiheitsgrad i ist eine parametrisierte Funktion $q^i(t)$ mit Werten in seinem Bewegungsbereich.

Die Trajektorie eines Roboters mit n Freiheitsgraden ist dann ein Vektor von solchen parametrischen Funktionen mit einem gemeinsamen Parameter:

$$\mathbf{q}(t) = [q^1(t), q^2(t), \dots, q^n(t)]^T$$

Eine Trajektorie ist C^k -stetig,

wenn alle Ableitungen bis zur k-ten (einschließlich) ihres Positionsprofils existieren und stetig sind.

Eine Trajektorie ist glatt, wenn sie mindestens C^2 -stetig ist.

Anmerkungen zur Trajektoriengenerierung

- Die erste Ableitung der Trajektorie bezüglich der Zeit: die Geschwindigkeit
- Die zweite Ableitung: die Beschleunigung
- Die dritte Ableitung: der Ruck
- Die glattesten Kurven: mit unendlich oft differenzierbaren Funktionen definierte Kurven.

```
Beispiele: e^x, sin x, und log x (x > 0).
```

• Polynome für Interpolation geeignet (aber zu hohe Grade führen zur Oszillation).

Kapitel: Trajektoriegenerierung

Abschnitt: Trajektorien im multidimensionalen Raum

• Stückweise Polynome mit bestimmten Graden anwendbar: kubische Polynome, Splines, B-Splines usw.

Kubische Polynome zwischen zwei beliebigen Konfigura

Wenn die Start- und Endgeschwindigkeit beiden Null sind: dann gilt es:

$$\theta(0) = \theta_0$$

$$\theta(t_f) = \theta_f$$

$$\dot{\theta}(0) = 0$$

$$\dot{\theta}(t_f) = 0$$

Abschnitt: Kubische Polynome zwischen zwei beliebigen Konfigurationen

vier Constraints ⇒ eine Polynome der Ordnung vier:

$$\theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Abschnitt: Kubische Polynome zwischen zwei beliebigen Konfigurationen

Kubische Polynome zwischen zwei beliebigen Konfigura

Die Lösung:

$$a_0 = \theta_0$$

$$a_1 = 0$$

$$a_2 = \frac{3}{t_f^2} (\theta_f - \theta_0)$$

$$a_3 = -\frac{2}{t_f^3} (\theta_f - \theta_0)$$

Kubische Polynome für eine Trajektorie mit Zwischenp

Die Positionen der Zwischenpunkte sind ebenfalls bekannt. Nur die Geschwindigkeiten bei den Zwischenpunkten sind nicht mehr Null:

$$\dot{\theta}(0) = \dot{\theta}_0$$

$$\dot{\theta}(t_f) = \dot{\theta}_f$$

Die Lösung:

$$a_0 = \theta_0$$

$$a_1 = \dot{\theta}_0$$

$$a_2 = \frac{3}{t_f^2} (\theta_f - \theta_0) - \frac{2}{t_f} \dot{\theta}_0 - \frac{1}{t_f} \dot{\theta}_f$$

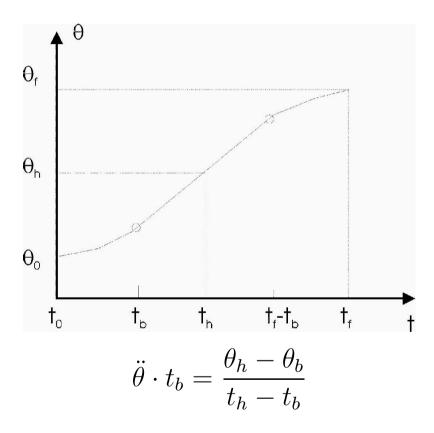
Kapitel: Trajektoriegenerierung

Abschnitt: Kubische Polynome zwischen zwei beliebigen

Konfigurationen

$$a_3 = -\frac{2}{t_f^3} (\theta_f - \theta_0) + \frac{1}{t_f^2} (\dot{\theta}_f + \dot{\theta}_0)$$

Lineare Funktion mit parabolischen Übergängen



Kapitel: Trajektoriegenerierung

Abschnitt: Lineare Funktion mit parabolischen Übergängen

$$\theta_b = \theta_0 + \frac{1}{2}\ddot{\theta}t_b^2$$

Wenn $t = 2t_h$, bekommen wir:

$$\ddot{\theta}t_b^2 - \ddot{\theta}tt_b + (\theta_f - \theta_0) = 0$$

$$t_b = \frac{t}{2} - \frac{\sqrt{\ddot{\theta}^2 t^2 - 4\ddot{\theta}(\theta_f - \theta_0)}}{2\ddot{\theta}}$$

Die Einschränkung der Beschleunigung ist:

$$\ddot{\theta} \ge \frac{4(\theta_f - \theta_0)}{t^2}$$

Bestimmung der Geschwindigkeiten bei den Zwischenp

- Manuelle Spezifikation basierend auf der Kartesischen linearen und Winkelgeschwindigkeit des Tool-Frames;
- Automatische Berechnung mit Hilfe von Heuristiken im Kartesischen Raum oder Gelenkwinkelraum;
- Automatische Auswahl so daß die Beschleunigung bei den Zwischenpunkten stetig ist.

Prof. J. Zhang Vorlesung: Einführung in die Robotik

Abschnitt: Faktoren für zeitoptimale Bewegungen - Bogenlänge

Faktoren für zeitoptimale Bewegungen - Bogenlänge

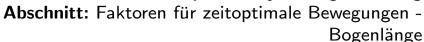
Gegeben sei eine Kurve im n-dimensionalen K-Raum

$$\mathbf{q}(t) = [q^1(t), q^2(t), \dots, q^n(t)]^T$$

dann ist die Bogenlänge als ein natürlicher Parameter wie folgt definiert:

$$s = \int_0^t |\dot{\mathbf{q}}(t)| dt$$

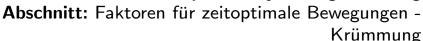
wobei $|\dot{\mathbf{q}}(t)|$ die euklidische Norm des Vektors $d\mathbf{q}(t)/dt$ ist und als die Flußgeschwindigkeit entlang der Kurve bezeichnet wird. Gegeben seien zwei Punkte $\mathbf{p}_0 = \mathbf{q}(t_s)$ und $\mathbf{p}_1 = \mathbf{q}(t_z)$,



dann ist die Bogenlänge L zwischen \mathbf{p}_0 und \mathbf{p}_1 das Integral:

$$L = \int_0^L ds = \int_{t_s}^{t_z} |\dot{\mathbf{q}}(t)| dt$$

"Die Parameter einer Trajektorie sollen so entworfen werden, daß die Bogenlänge der Trajektorie L möglichst kurz gehalten wird."



Faktoren für zeitoptimale Bewegungen - Krümmung

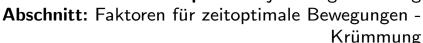
Zuerst wird ein *Einheitstangentenvektor* der Kurve $\mathbf{q}(t)$ folgendermaßen definiert:

$$\mathbf{U} = \frac{d\mathbf{q}(t)}{ds} = \frac{d\mathbf{q}(t)/dt}{ds/dt} = \frac{\dot{\mathbf{q}}(t)}{|\dot{\mathbf{q}}(t)|}$$

Seien s als der Parameter der Bogenlänge und \mathbf{U} als der Einheitstangentenvektor vorgegeben, so wird die **Krümmung** einer Kurve $\mathbf{q}(t)$ definiert:

$$\kappa(s) = \left| \frac{d\mathbf{U}}{ds} \right|$$

Seien nur der Parameter t, die erste Ableitung $\dot{\mathbf{q}}=d\mathbf{q}(t)/dt$ und die zweite Ableitung $\ddot{\mathbf{q}}=d\dot{\mathbf{q}}(t)/dt$ der Kurve $\mathbf{q}(t)$ vorgegeben, dann kann die **Krümmung** aus der folgenden Darstellung berechnet werden:



$$\kappa(t) = \frac{|\dot{\mathbf{q}} \times \ddot{\mathbf{q}}|}{|\dot{\mathbf{q}}^3|} = \frac{(\dot{\mathbf{q}}^2 \ddot{\mathbf{q}}^2 - (\dot{\mathbf{q}} \cdot \ddot{\mathbf{q}})^2)^{1/2}}{|\dot{\mathbf{q}}|^{3/2}}$$

wobei $\dot{\bf q} \times \ddot{\bf q}$ das Kreuzprodukt und $\dot{\bf q} \cdot \ddot{\bf q}$ das Skalarprodukt von $\dot{\bf q}$ und $\ddot{\bf q}$ sind.

Die **Biegeenergie** einer glatten Kurve $\mathbf{q}(t)$ über dem Intervall $t \in [0, T]$ ist definiert als

$$E = \int_0^L \kappa(s)^2 ds = \int_0^T \kappa(t)^2 |\dot{\mathbf{q}}(t)| dt$$

wobei $\kappa(t)$ die Krümmung von $\mathbf{q}(t)$ ist.

"Die Biegeenergie E einer Trajektorie soll unter Mitberücksichtigung der Bogenlänge L möglichst klein gehalten werden."

Faktoren für zeitoptimale Bewegungen - Bewegungszeit

Sei

$$u_i = t_{i+1} - t_i$$

die gebrauchte Zeit für Bewegung im Segment q_i .

Die gesamte Bewegungszeit ist dann:

$$T = \sum_{i=1}^{n-1} u_i$$

Prof. J. Zhang Vorlesung: Einführung in die Robotik

Dynamische Constraints aller Gelenke

Die Grenze der minimalen Bewegungszeit einer Teiltrajektorie $\mathbf{q}^i_j(t)$ wird durch die dynamischen Parameter aller Gelenke bestimmt.

Für das Gelenk i können solche Beschränkungen wie folgt dargestellt werden:

$$|\dot{q}_j^i(t)| \le \dot{q}_{max}^i$$

$$|\ddot{q}_j^i(t)| \le \ddot{q}_{max}^i$$

$$|u_j^i(t)| \le u_{max}^i$$

wobei i $(i=1,\ldots,n)$ die Gelenknummer ist, und j $(j=1,\ldots,m)$ die Nummer der Teiltrajektorie repräsentiert.

Kapitel: Trajektoriegenerierung

Abschnitt: Dynamische Constraints aller Gelenke

 u^i ist das Kraftmoment des Robotergelenks i und wird aus der Dynamikgleichung (Bewegungsgleichung) berechnet.

 \dot{q}^i_{max} , \ddot{q}^i_{max} und u^i_{max} repräsentieren die wichtigsten Parameter der dynamischen Kapazität eines Roboters.

Kartesischen Raum

Probleme der Trajektoriengenerierung im Kartesischen

- Zwischenpunkte nicht erreichbar
- Zu hohe Geschwindigkeit in der Nähe von Singulären Konfigurationen
- Start- und Zielkonfigurationen erreichbar aber sie gehören zu verschiedenen Lösungen.

Prof. J. Zhang Vorlesung: Einführung in die Robotik

Bewegung entlang einer geraden Linie $<\mathbf{w}_0,\mathbf{w}_1>$ - I

Für einen gegebenen Wert $\epsilon > 0$, soll der folgende Algorithmus möglichst wenige Zwischenpunkte im Gelenkwinkelraum erzeugen, die aber erfüllen, daß die Abweichung der durch diese Zwischenpunkte gehenden Trajektorie zu der geraden Linien $< \mathbf{w}_0, \mathbf{w}_1 >$ nicht größer als ϵ ist.

Algorithmus(Bounded_Deviation)

- 1. Berechnung der entsprechenden Konfigurationen $\mathbf{q}_0, \mathbf{q}_1$ aus $\mathbf{w}_0, \mathbf{w}_1$ mit Hilfe der Gleichungen der inversen Kinematik.
- 2. Berechnung des Mittelpunktes im Gelenkwinkelraum:

$$\mathbf{q}_m = \frac{\mathbf{q}_0 + \mathbf{q}_1}{2}$$

3. Berechnung der entsprechenden Punkte von \mathbf{q}_m im Arbeitsraum mit

Hilfe der direkten Kinematik:

$$\mathbf{w}_m = W(\mathbf{q}_m)$$

4. Bestimmung des exakten Mittelpunktes im Arbeitsraum:

$$\mathbf{w}_M = \frac{\mathbf{w}_0 + \mathbf{w}_1}{2}$$

- 5. Wenn die Abweichung $||\mathbf{w}_m \mathbf{w}_M|| \le \epsilon$, dann abbrechen; sonst \mathbf{w}_M als Knotenpunkt zwischen \mathbf{w}_0 und \mathbf{w}_1 einfügen.
- 6. Rekursive Anwendungen des Algorithmus für die zwei neue Segmente $(\mathbf{w}_0, \mathbf{w}_M)$ und $(\mathbf{w}_M, \mathbf{w}_1)$.