1

Real-Time Computer Vision for Human Interfaces

Yoshio Matsumoto

Nara Institute of Science and Technology, Japan

Introduction to Robotics Lab at NAIST

EURON Summer School 2003

video

Face Measurement System and Its Applications

Yoshio Matsumoto

Nara Institute of Science and Technology, Japan

Motivation: Face Measurement

- For Human-Robot Interaction,
 - when a person teaches a task to a robot
 - when a person makes a cooperative task with a robot natural ways of communication is required.
- Head motion and gaze direction reflect intention and attention of a person.

Gaze Tracking Techniques: Corneal Reflection

- Head should not move, or head pose is measured by magnetic sensor etc.
- Eye rotation is detected using IR refection on corneal
- Head mounted device prohibits natural behaviors
- Accurate in best condition, however hard to keep it
- Binocular systems and external camera system are also available

Gaze Tracking Techniques: Corneal Reflection (cont'd)

Figure: Pupil and Purkinje images as seen by eye tracker's camera

- Purkinje images appear as small white dots in close proximity to the (dark) pupil
- tracker calibration is achieved by measuring user gazing at properly positioned grid points (usually 5 or 9)
- tracker interpolates POR on perpendicular screen in front of user

Gaze Tracking Techniques: EOG (electro-oculography)

Figure: EOG measurement:

 relies on measurement of skin's potential differences using electrodes placed around the eye

- most widely used method some 20 years ago (still used today)
- measures eye movements relative to head position
- not generally suitable for POR measurement (unless head is also tracked)

Gaze Tracking Techniques: Scleral Contact Lens/Search Coil

Figure: Scleral coil:

- search coil embedded in contact lens and electromagnetic field frames
- possibly most precise
- similar to electromagnetic position/orientation trackers used in motion-capture

Gaze Tracking Techniques: Scleral Contact Lens/Search Coil (cont'd)

Figure: Example of scleral suction ring insertion:

- most intrusive method
- insertion of lens requires care
- wearing of lens causes discomfort

- highly accurate, but limited
 measurement range (~5°)
- measures eye movements relative to head position
- not generally suitable for POR measurement (unless head is also tracked)

Real-Time Vision for Face Measurement

Toyama, MSR (1998)

Colmenarez, UIUC (1997)

- One of the important topics in PUI research
- Being actively studied at Microsoft, IBM, MIT, CMU, Univ. of Illinois etc.

Few of them can measure the quantitative gaze direction
Most of them use monocular camera systems 11

Our Approach

- Stereo camera system for 3D measurement
- 3D facial model
- Feature tracking by normalized correlation
- 3D model fitting algorithm based on spring model

- Real-time Face Tracking
- Gaze direction, blinking and lip motion are additionally measured

EURON Summer School 2003

1. Algorithm of Face Measurement

System Configuration

- PC with Pentium III 450MHz or higher
- OS : Linux 2.2 or 2.4
- Stereo Camera Pair

3D Facial Model

- Corners of eyes and mouth are used for tracking
- 3D Facial Model = Template Images + 3D coordinates

3D Model Fitting for Face Tracking

$$E = \sum_{i=0}^{n-1} W_i (Rx_i + t - y_i)^T (Rx_i + t - y_i)$$

- n : # of features
- X_i : Coordinate of each feature in the model
- y_i : Coordinate of each measurement
- W_i : Reliability for each measurement (0..1)

 $R(\theta, \phi, \varphi)$: Rotation matrix T(x, y, z) : Translation vector

3D Model Fitting for Face Tracking (cont'd)

Assumption: displacement between previous and current frame is small

At time t

At time t + dt

3D Model Fitting for Face Tracking (cont'd)

Gradient 3D model fitting method based on virtual spring model

At time t + dt

EURON Summer School 2003

Result of Face Tracking

Accuracy of Face Tracking

Estimation of Gaze Direction

Result of Gaze Measurement

- Look at markers from ① to ① with intervals of 10cm
- Intersection of 3D gaze vector and the board are displayed as a fixation point

EURON Summer School 2003

Result of Gaze Measurement

Result of Gaze Measurement

Accuracy: Approx. 5[deg]

Result of Face Measurement

Hardware Configuration

Selectable from below combinations depending on requirements and costs

IEEE1394 High-Speed Stereo Camera, 80Hz

30Hz, 1.5kg, US\$2000

Field Multiplexing Device

- Multiplexed stereo video streams into a single video stream.
- Vertical resolution of each video signal becomes half.
- Can be used for any conventional image processing system.

Attention Recognition

The object that a person is looking at is recognized by calculating θ i for all objects.

Attention Recognition

EURON Summer School 2003

Attention Recognition

Attention Recognition based on Gaze Line Detection

Gesture Recognition

Spotting gesture recognition based on Continuous DP Matching using head motions (velocity, angular velocity)

Gesture Recognition

EURON Summer School 2003

Gesture Recognition

Gesture Recognition based on Face Tracking

Specs of Developed System

Accuracy

Head pos : 2mm dir : 2deg Gaze dir : 5deg

Processing Speed

30Hz~80Hz (depending on camera)

Software Configuration

Software Configuration

Software Configuration

38

Potential Application Areas

Since this system is non-contact, passive, and inexpensive, it can be applied to many application areas where conventional systems cannot be used.

- Human Interfaces
 - Computer Interface (e.g. Hands-free mouse)
 - Robot Interface (e.g. Eye-contact communication)
 - Safety System (e.g. Driver support)
 - Assistive Products for the disabled
- Human Modeling
 - Cognitive Science (Experiment on visual cognition)
 - Ergonomics (e.g. Human-friendly design)

EURON Summer School 2003

2. Application to Human Interfaces

EURON Summer School 2003

2.1 Computer Interfaces

Direct Usage of Head Movements: Hands-Free Mouse

How to Use Eye Movements for Computer Interfaces ?

- Eye movement [Glenstrup 95]
 - Convergence
 - Rolling
 - Saccades
 - Pursuit motion
 - Nystagmus
 - Drift and micro-saccades
 - Physiological nystagmus
- Need to refine raw data:
 - distinguish Fixations from Saccades

How to Use Eye Movements for Computer Interfaces ?

Saccade/Fixation detection

- Velocity-Threshold
 - Saccades >300 deg/sec.
 - Fixations <100 deg/sec.
 - Usual threshold 200 deg/sec.
- Dispersion-Threshold $D = \frac{\max(x) - \min(x)}{\max(y) - \min(y)}$
 - Threshold set such that visual angle is between 0.5
 ° and 1°.

How to Use Eye Movements for Computer Interfaces ?

- Command based Interface
 - Obvious application: Selection of objects {Menu selection, Window scrolling, ...) \Rightarrow Pointing.
 - Midas Touch problem: Eyes not a control device.
 - Use *dwell time* to trigger a selection.
- Non-Command Interfaces
 - The computer monitors user's actions instead of waiting for user's command.
 - Potential Applications: User Support
 - ⇒ Detect difficulties and provide translation support of difficult words

Pro-Active Dictionary: How to detect User Difficulties?

Gaze Pattern in Normal Reading ninal relies which had a way of wandering into unlikely pos estroying documents, especially those which were connected that he would muster energy to docket and arrange them; the outbursts of passionate energy when he performed the followed by reactions of lethargy during which he would lie

Gaze Pattern when Difficulties Encountered ninal relies which had a way of wandering into unlikely pos estroying documents, especially those which were connected that he would muster energy to docket and arrange them; , the outbursts of passionate energy when he performed the followed by reactions of lethargy during which he would lie

Pro-Active Dictionary: Implementation

Pro-Active Dictionary: Demonstration

EURON Summer School 2003

2.1 Robot Interfaces

CCD cameras

How is facial information used ?

- Gesture
 - Nodding -> To start
 - Shaking ->To stop
- Face Direction
 - To determine the direction to move
- Gaze Direction
 - To determine if the user is concentrated

Various lighting conditions

EURON Summer School 2003

Intelligent Wheelchair

Sensor-based collision avoidance and wall following

Result of Experiment (Trajectory)

Result (Input and Output Values)

How to detect concentration of the user?

Intelligent Wheelchair Estimation of User's Attention

59

Estimation of User's Attention

Estimation of User's Attention

Intelligent Wheelchair Estimation of User's Attention

62

Receptionist Robot ASKA

Receptionist Robot ASKA

ASKA: System Overview

Hardware Configuration

Software Configuration

Receptionist Robot ASKA

Problem to Solve with Vision

Problem

Wrong responses to :

- Ø Background noises
- Ø Utterances which are not spoken to ASKA

Purpose of This Research :

- To recognize the utterance period
- To detect whether user speaks to ASKA or not

For natural human-robot interaction.

Software Configuration

Pilot Study

Dialog Experiment

- Measured information
 - •Head orientation
 - •Gaze
 - •Lip motion
 - •Blink
- •Subject
 - •10
- •Speech sentence
 - •Fixed sentence : 5
 - •Free sentence : 5

Information at Utterance

Sign of Utterance : Start

Subject B

Sign of Utterance : Start

Allowing area

From the center of ASKA's face :

- Gaze vector area 300 [mm]
- Face vector area 400 [mm]

Detection of Start of Utterance

Experiment : Detection of Utterance Sign

Demonstration : Interaction Based on Utterance Sign

EURON Summer School 2003

3. Application to Human Modeling

Measurement of Infants

Measurement of Infants

Measurement of Infants

Measured Results

Measurement of TV Game Players

Measurement of TV Game Players

Frequency of Blinking

This result coincides with Psychological Report

System overview

Software Configuration

Experiment at night

Horizontal head movements at curves

Not passive head movements due to centrifugal force, but active head movements to cope with centrifugal force. 88

Vertical head position in long driving

Body posture changed after long driving ?Body lowered due to the softness of the seat?

Measured fixation point and yaw rate of vehicle

Attention Recognition

91

Attention Recognition

Where are you looking when lane changing?

Measurement of Patients in PET

To compensate head motion during measurement

Summary

EURON Summer School 2003

Fin