
Building Spoken Dialogue
Systems for Embodied Agents

Lecture 3

Johan Bos
School of Informatics

The University of Edinburgh
http://www.ltg.ed.ac.uk/dsea

Outline of the course

• Part I: Natural Language Processing
– Practical: designing a grammar for a

fragment of English in a robot domain

• Part II: Inference and Interpretation
– Practical: extending the Curt system

• Part III: Dialogue and Engagement

This Lecture

• Communication is more than just
language

• Building Dialogue Systems

Dialogue is more than just
using verbal language

• Engagement
• Engagement for robots
• Mel, the Penguin Robot
• Indicators of engagements
• Simple heuristics
• Greta, the talking head

Engagement 1/2

• “the process that two participants
establish, maintain, and end during
interactions they jointly undertake”
(Sidner et al. 2003)

• Supported by conversation,
collaboration on a task, and gestural
behaviour that convey connection
between participants

Engagement 2/2

• The means by which one participant
tells the other that (s)he intends to
continue the interaction (or abandon it)

• Not only speaker, also hearer (gestures)
• Grounding is part of engagement
• Turn taking
• Compare face-to-face vs. telephone
• Cultural differences

Engagement for Robots

• A robot must convey such gestures, and
also interpret similar behaviour from its
conversational partners

• Proper generation and interpretation of
engagements enhances success of
conversation (and collaboration)

• Inappropriate behaviour can cause
misinterpretations (examples)

Engagement Capabilities
for a Robot

• Initiate, maintain, and disengage in
conversation

• Dialogue management
– turn taking
– Interpreting intentions and goals of other

participants
• Examples: where to look at the end of

the turn

Example: Mel (Sidner et al. 2003)

• Mel: Robot which looks like a penguin
• Uses head, wings and beak for gestures
• Mel’s hardware

– Face detection
– Sound location
– Object Recognition

Mel the Penguin Robot

• Considers choices at every point of the
conversation for
– Head-movement
– Gaze
– Use of pointing

• Determines changes in head-
movements, gaze and use of pointing of
the participant

Indicators of Engagement

• Looking at the speaker is evidence for
engagement

• Looking around the room (for more than
brief moments) indicates disinterest and
possible the intention to disengage

• However, looking at objects relevant to
the conversation are not indicators of
disengagement!

Heuristics for implementing engagement

• For a hearer: do what the speaker does!
– Look wherever the speaker looks
– Look at speaker if (s)he looks at you
– Look at relevant objects of the discussion

Building Spoken Dialogue
Systems with DIPPER

DIPPER…

• Offers an architecture for prototyping
spoken dialogue systems

• Is based on the Open Agent
Architecture

• Has it own Dialogue Management
Component, based on the information-
state approach (Trindi)

Overview of this Talk
• The Dipper environment

– Open Agent Architecture (OAA)
– Agents and Solvables
– Dialogue Management in Dipper

• The Information-state update approach
– Information states
– Update Language

• Comparison with TrindiKit
• Working with Dipper

1. The DIPPER environment
• How to build a dialogue system using and

adapting off-the-shelf components that
– need to interact with each other
– are implemented in various programming

languages
– are running on various platforms?

• Examples:
– Festival (C++), Nuance (C,C++,Java)
– Parsing, Context Resolution (Prolog)
– Dialogue Management (Prolog), O-Plan (Lisp)

The Open Agent Architecture

• Framework for integrating a community of
heterogeneous software agents in a
distributed environment

• Agents can be created in multiple
programming languages on different platforms

• Agents can be spread across a computer
network

• Agents can cooperate or compete on tasks in
parallel

OAA Philosophy

• express requests in terms of what is to be
done in terms of solvables without requiring
specifying
– who is to do the work
– how it should be performed

• requester delegates control for meeting a
goal with the facilitator (coordinating the
activities of agents)

• develop components of application separately
by wrapping them into agents

OAA Availability
• Developed by SRI AIC, freely available.
• Current Version OAA-2.1 (released Sept’01)

– libraries for Java, C, C++, Prolog, and WebL
– Solaris, Linux, and Windows 9x/NT

• OAA-1.0
– more languages (Lisp, Basic, Delphi, Perl etc.)
– SunOs 4.1.3, SGI IRIX

• OAA-2.1 Facilitator provides backward
compatibility
– OOA-1 and OAA-2 agents can co-exist

• Active community exists

OAA Agent Types

• requester: specifies goal to the facilitator,
provides advice on how it should be met

• providers: register their capabilities with the
facilitator, know what services they provide,
understand limits of their ability to do so

• facilitator: maintains a list of provider agents
and a set of general strategies for meeting
goals

Prolog wrapper for requester

Prolog wrapper for provider

Dipper: Input/Output Agents
• ASR: Dipper supports agent “wrappers” for

Nuance 7.0 and 8.0 with solvables:
– recognize(+Grammar,+Time,-Result)

• Synthesis: Festival, rVoice, Greta, with
solvables:
– text2speech(+Text)

– sable2speech(+SABLE)

– play_apml(+APML)

Dipper: Supporting Agents

• OAA comes itself with Gemini
– parsing and generation

• Dipper provides further agents
– DRT stuff (resolution, inference)
– Theorem proving (SPASS, MACE)
– Content planning (O-Plan)
– X-10 Device control (Heyu)

Dipper: Dialogue Management Agents

• Dialogue management forms the heart of a
dialogue system:
– Reading (multi-modal) input modalities
– Updating the current state of the dialogue
– Deciding what to do next
– Generating output

• It is the most complex agent!
• Dipper implements dialogue management as

two agents: the DME, and the DME server

The Dialogue Move Engine

• The DME agent, with solvables:
– check_conds(+Conditions)

– apply_effects(+Effects)

• The DME server mediates between the
DME agents and other agents
– dme(+Call,+Effects)

• Multiple threads possible

Dipper DME functionality

DME
agent

DME
server

OAA
Agent 1

OAA
Agent 2

OAA
Agent 3

OAA
Agent 4

Information
State spec

Update
Rules

2. The Information-State Approach

• Some History
• The Information-state Approach
• Specifying Information States
• The Dipper Update Language
• A simple example

Some History

• Traditional approaches:
– Dialogue state approaches (dialogue

dynamics specified by a set of states and
transitions modelling dialogue moves)

– Plan-based approaches (used for more
complex tasks showing flexible dialogue
behaviour

• Information-state approaches combine
the merits of both approaches

Information-state Approaches
• Declarative representation of dialogue

modelling
• Components:

– Specification of contents of the information state of
the dialogue

– Datatypes to structure information
– A set of update rules
– Control strategy for information state updates

• First implementation: TrindiKit
• Dipper builds on TrindiKit

Specifying Information States

• The information state “represents the
information necessary to distinguish it from
other dialogues, representing the cumulative
additions from previous actions in the
dialogue, and motivating further action”
(Traum et al., 1999)

• Compare: mental model, discourse context,
state of affairs, conversational score, etc.

• Dipper uses TrindiKit technology representing
information states

Example:
Information State Definition

Datatypes: record, stack, queue, atomic, drs

is:record([grammar:atomic,

input:queue(atomic),

sem:stack(record([int:atomic,

context:drs]))])

Information State based on
Ginzburg’s QUD (Godis)

• Private:
– Bel: set of propositions (according to system)
– Agenda: stack of actions (short-term intentions)
– Plan: stack of actions (long-term dialogue goals)
– Tmp: copy of Shared

• Shared:
– Bel: set of propositions (shared by participants)
– QUD: stack of questions under discussion
– LM: latest move (speaker, move, content)

The Dipper Update Language

• Update Rules have 3 components
– Name (identifier)
– Conditions (a set of ‘tests’ on the current

information state)
– Effects (an ordered set of operations on

the information state, resulting in a new
state)

• Conditions and effects are defined by
the Dipper Update Language

Standard vs Anchored Terms

• Standard Terms: basic definitions of the
datatypes (constants, stacks, queues,
records)

• Special term: is, referring to the
complete information state

• Anchored Terms
– is, T^F, first(T), last(T), top(T), member(T)

Example: Anchored Terms
• Information State (s)
is: grammar: ’.Yesno’

input: <>

sem: < int: model(…)

context: drs([X,Y],…) >

• Reference: [.]s
– [is^grammar]s = ‘.Yesno’
– [grammar]s = grammar
– [top(is^sem)^context]s = drs([X,Y],…)
– [top(sem)^context]s = undefined

Conditions and Effects

• Conditions
– T1=T2, T1≠T2
– empty(T1), non_empty(T1)

• Effects (T1 anchored)
– assign(T1,T2), clear(T1), pop(T1),
push(T1,T2), dequeue(T1), enqueue(T1,T2)

– solve(S(…,Ti,…),Effects)

A Simple Example: Parrot
• We will use the following information state

structure:

is:record([input:queue(atomic),

listening:atomic,

output:queue(atomic)])

• Four agents:
– ASR, SYN, the DME agent

and the DME server

Update Rules for Parrot
urule(timeout,

[first(is^input)=timeout],

[dequeue(is^input)]).

urule(process,

[non_empty(is^input)],

[enqueue(is^output,first(is^input),

dequeue(is^input)]).

urule(synthesise,

[non_empty(is^output)],

[solve(text2speech(first(is^output)),[]),

dequeue(is^output)]).

urule(recognise,

[is^listening=no],

[solve(recognise(‘.Gram’,10,X),

[enqueue(is^input,X),assign(is^listening,no)]),

assign(is^listening,yes)]).

3. Working with DIPPER

• Prototyping
– How to build and run a DIPPER application
– The startit.sh and monitor.sh

• Debugging
– Testing and debugging of information-state

approaches can be difficult

• DIPPER prototypes

How to build and run a
DIPPER application?

• Set up your machine for using OAA
(and Nuance)

• Decide which components you want to
use and specify an OAA config file

• Specify information state and update
rules

• Start the OAA facilitator (fac.sh) and the
OAA application manager (startit.sh)

OAA tools (startit.sh and monitor.sh)

The DIPPER GUI

Dipper Prototypes

• D’Homme (home automation)
• IBL (route explanation to mobile robot)
• Godot (our own robot in the basement)
• Magicster (believable agent Greta)

• Dipper Resources:
http://www.ltg.ed.ac.uk/dipper

