Simulation of Surgical Procedures in Virtual Environments

Cagatay Basdogan, Ph.D.

College of Engineering, Koc University

Notes & Equations & Matlab Code are online: http://network.ku.edu.tr/~basdogan

Significance:

VR-based training

- to train and certify medical personnel
- to reduce the use of animals in training
- to test new surgical devices and procedures

Challenges:

Physically-Based Modeling

 $\mathbf{F} = \mathbf{MU} + \mathbf{CU} + \mathbf{KU}$

(dynamic analysis)

__Node (e.g. 100)

- membrane+bending elements
- 6-dof for each node
- Stiffness Matrix : K (600x600), diagonal M and C

600 coupled equations !

F: force

EURON Summer School 2003

Real-time Display

Graphics (30 Hz)
Haptics (1000 Hz)
1 msec !

Tissue Characteristics

- nonlinear
- anisotropic
- hysteresis
- non-homogeneous

Topics:

A) Collision detection and computational models of surgical instruments

B) Physically-based modeling for simulating soft tissue behavior

C) Haptic rendering of deformable objects

D) Software and hardware integration

Case Study:

Simulation of Catheter Insertion into the Cyctic Duct

What you see ...

What is really happening ...

(e.g. catheter - cyctic duct)

(e.g. forceps - cyctic duct)

EURON Summer School 2003

Computational Models of Laparoscopic Instruments

Physically-based modeling for simulating soft tissue behavior

- Desired properties of deformable models
- Modeling of deformable objects
 1) particle-based
 2) FEM-based
- Implementing constraints
- Problems with particle-based techniques
- Problems with FEM techniques

Desired properties of force-reflecting deformable models

- reflect <u>stable</u> forces
- display <u>smooth</u> deformations
- handle various boundary conditions and constraints
- display "physically-based" behavior in real-time

Modeling of Deformable Objects

visit my web-site for the details : http://eis.jpl.nasa.gov/~basdogan

Comparison

Particle-based

easy to implement, flexible

FEM-based

Hybrid Approach

Constraints

(see my SIGGRAPH'99 Course Notes for details, http://eis.jpl.nasa.gov/~basdogan)

Examples:

- a node is fixed in 3D space
- a node is constrained to stay on a path
- curvature constraint
- constant volume

Implementation:

Particle-based models (<u>Ref: Witkin/Baraff, SIGGRAPH'97 Notes</u>)

 a) Penalty
 b) Lagrange multipliers

 FEM

Problems with Particle-Based Techniques

D) Too few elements \implies difficult to preserve volume

distribution of elements

E) Non-homogeneous _____ finer adjustment of spring and damper coefficients

Problems with FEM Techniques

- A) Change in topology
- B) Dynamic analysis
- C) Matrix inversion

requires

Re-meshing Modeling approximations

Pre-computation

D) Memory allocation

Simplifications in the geometry

Point-based

EURON Summer School 2003 Ray-based

Computational Architecture

D) Software and Hardware Integration: tips and tricks

- Programming tips to speed up your computations
- Modeling tips to speed up your computations
- Simulation set-up

Programming tips to speed up your computations

• Synchronize your haptic and graphic loops through a shared database

Modeling tips to speed up your computations

- consider local deformation
- take advantage of single point interactions
- condense your matrices in FEM
- consider modeling approximations for dynamic FEM analysis
- pre-compute (matrices, unit displacements/force)
- loosely couple your force and deformation model
- take advantage of human perceptual limitations

EURON Summer School 2003

local deformation

r = lvertex[i].coord - Collision Point l; if (r < R_{deformation}) vertex[i].frozen = yes;

point-based interactions

 $U = K_i^{-1} F_i$

Multiply "i" is the i-th column of K^{-1} matrix and i-th entry of force vector

condensation

$$\begin{bmatrix} K_{MM} & K_{MS} \\ K_{SM} & K_{SS} \end{bmatrix} \begin{bmatrix} U_M \\ U_S \end{bmatrix} = \begin{bmatrix} F_M \\ F_S \end{bmatrix}$$

- eliminate internal elements
- eliminate rotational dofs

loose coupling of force and displacement models

human perceptual limitations

Modeling approximations:

Spectral Lanczos Decomposition

$$E'(t) = F_o \frac{1}{K'} (1 - e^{\frac{-\alpha t}{2}} Cos(\sqrt{K' - (\alpha^2/4)I}t) + \frac{\alpha}{2} \frac{1}{\sqrt{K' - (\alpha^2/4)I}} e^{\frac{-\alpha t}{2}} Sin(\sqrt{K' - (\alpha^2/4)I}t)$$

K' (not diagonal !) _{NxN}

Lanczos Decomposition

EURON Summer School 2003

Simulation of Catheter Insertion

Simulation Set-Up

EURON Summer School 2003 Virtual

Geometric Model

<u>tutorial notes are available online:</u> Siggraph'99, MMVR'00, MMVR'01

http://network.ku.edu.tr/~cbasdogan

Acknowledgement:

haptic rendering Chih-Hao Ho, Mandayam Srinivasan, MIT
design of force reflecting grippers Ela Ben-Ur, Mark Ottensmeyer, Ken Salisbury, MIT
discussions on finite element modeling Suvranu De, MIT
discussions on medical procedures, videos, and several OR visits Steve Small, Steve Dawson, David Rattner, MGH-Harvard Medical School
laparoscopic trainer, several visits to animal facility Cynthia Barlow (Harvard Medical School)
set-up Chih-Hao Ho, MIT