From 2D Images to 3D Tangible Models: Reconstruction and Visualization of Martian Rocks

Cagatay Basdogan, Ph.D. College of Engineering Koc University

The Old Story ...

(July 04, 1997)

The New Story ...

January 04, 2004

2003 Mars Rover

Press Release Animation

Dan Maas dmaas@dcine.com

Our goal ...

From 2D Images to 3D Models School 2003

Limitations ...

<u>Sojourner</u>

<u>Laptop</u>

• CPU:

• Memory:

- Transmission Rate:
- Transmission Delay
- Transmission Interval
- Transmission Reliability

2MHz 768Kb

- <5 bytes/sec
- ~ 20 min.
- ~ 2 hours

poor

2 GHz 256 Mb + 40 Gb 100 Mb/sec < 200 msec anytime good

Data Acquisition

JPL – Marsyard (http://marsyard.jpl.nasa.gov)

EURON Summer School 2003 Input: Range Scans

3D Reconstruction

EURON Summer School 2003

3D Registration

Pair-wise registration problem:

D

Given 2 overlapping range scans what is the rigid transformation, T, that minimizes the distance between them ?

$$E = \sum_{i}^{N} \|p_i - Tq_i\|^2$$

Solution: ICP algorithm (Besl and Kay, 1992)

EURON Summer School 2003

do

Identify corresponding points Compute the optimal T while (E < threshold)

3D Registration : Computation of T

$$E = \sum_{i}^{N} ||p_{i} - (Rq_{i} + t)||^{2}$$

R: Rotation Matrix

t: translation vector

Solution by Horn, 1990:

$$R = M (M^{T}M)^{-1/2}$$
$$t = \overline{p} - R\overline{q}$$

where,

$$M = \sum_{i}^{N} (p_i - \overline{p})(q_i - \overline{q})^{T}$$

3D Registration: Corresponding Points

We now have a closed form solution, how do we get the corresponding points in two scans?

Nearest points along the direction of the normal at q_i

<u>Problem</u>: Given a set of registered range scans, reconstruct a 3D surface that closely approximates the original shape.

Methods:

Delaunay-Based (Amenta et al., Siggraph'98)
Surface-Based (Turk and Levoy, Siggraph'94)
Volumetric (Curless and Levoy, Siggraph'96)

. . .

Which one is better? Robustness

Computationally Complexity Robustness Memory Usage

3D Integration: Volumetric Approach

<u>Input</u>: registered range surfaces VolumetricIntegration

Output: 3D Mesh

Our implementation:

Step 1: Merge the registered range surfaces using an *octree*Step 2: Extract an *isosurface* using the *Marching Cubes* algorithm

3D Integration (Step 1): Merge Range Images

EURON Summer School 2003 3D Integration (Step 1): Data Representation Using an Octree

Octree Representation: Our Implementation

Octree Encoding

Yemez & Schmitt, 1999

Our implementation:

Octrees for 3D Progressive Data EURON Summer School 2003

3D Integration (Step 2): Marching Cubes

2-D Example

EURON Summer School 2003 Marching Cubes Algorithm : 3D Case

(Lorensen et al., Siggraph'87)

3D Integration: Step 2: Signed Distance Computation

 $dot(v2,n2) < 0 \implies OUT$, distance = +|v2|

Can I estimate Normals?

<u>Problem</u>: Given a set of P <u>unorganized</u> sample points, estimate the point normals.

<u>Algorithm by Hoppe (Siggraph'92):</u>

Step 1: Tangent Plane Estimation

Step 2: Consistent Tangent Plane Orientation

 $R \sim (\sigma + \rho)$

Noise Density

Use covariance matrix to compute N $: \lambda_1 > \lambda_2 > \lambda_3$ SVD : eigenvalues eigenvectors $: v_1, v_2, v_3$

 $\vec{N?}$

N

2. Consistent Tangent Plane Orientation: Graph Optimization Problem

point-based rendering with colors

3D Visualization

Autostereoscopic Visualization

3D Visualization without any eye wear !

Stereoscopic viewing

Autostereoscopic viewing

Stereoscopic Visualization

Stereoscopic viewing

Autostereoscopic viewing

Autostereoscopic Displays

Relatively new area !

Hale et al., 1997, Siggraph Perlin et al., 2000, Siggraph

Classification by Hale et al.:

- Re-imaging displays
- Volumetric displays
- Parallax displays

- Holograms
- Parallax Barrier Displays
- Lenticular Sheet Displays
- Holographic Stereograms
- Electro-Holography

Stereo Rendering : Shear Transform

Shear Transform: $\mathbf{S} = \begin{vmatrix} I + \tan(\varphi)(\vec{v}^T \vec{w}) & 0 \\ -(\vec{O} \cdot \vec{v})\vec{w} & 1 \end{vmatrix}$ $\mathbf{S}_{camera} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{r_x}{r_z} & -\frac{r_y}{r_z} & 1 & 0 \\ r_z & r_z & & \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Eye pos: $\begin{bmatrix} r_x & r_y & r_z \end{bmatrix}$

FLIRON Summer School 200

EURON Summer School 2003 Haptic Visualization

- Rendering rock textures
- Displaying 3D rock shapes
- Tele-science experiments
- Guiding user's movements
- Positioning rover instruments

Haptic Display of Shape

Mapping Between Visual and Haptic Workspaces

Synchronization of Cursor Movements

Unsolved/Untouched Problems

Resources

EURON Summer School 2003

n-board

- 3D Registration: problems with ICP, global registration
- 3D Integration: robustness, storage requirements
- 3D Transmission: 3D geometry comp. vs 3D data comp.
- More effective transmission of normals and colors
- 3D Visual and Haptic Texturing
- Image-Based rendering
- Optimized computation (e.g. efficient data structures such as ADFs)
- Missing link between image analysis and 3d modeling
- More efficient graphical rendering (e.g. point-based rendering)
- Missing link between real-time 3D modeling and rover navigation
- Unified data structures for transmission of multi-modal data

Acknowledgements:

Supporting NASA Programs: IPN, ISE, CISMISS, USRP, SBIR, JPL/Caltech-UROP

<u>JPL</u>

Andres Castano (acquisition, registration)
Aaron Keily (encoding)
Ed Chow, Jose Salcedo (autostereoscopic visualization)
Larry Bergman (human-rover interactions)

<u>Industry (Physical Optics Corporation)</u> Steve Cupiac (autostereoscopic visualization) Andrew Kostrzewski, Kirill Kolesnikov (autostereoscopic display; hardware integration)

<u>Students</u> Mitch Lum, UW (autostereoscopic and haptic visualization) Elaine Ou, Caltech (vision and touch)

University

Prof. Marc Levoy, Stanford (3D range scans of "bunny", Scanalyze registration software; personal communication)Prof. Brian Curless, UW (3D photography notes; public domain)Dr. Huges Hoppe, Microsoft (Ph.D. Thesis and 3D reconstruction code; public domain)

Octrees for 3D Data Transmission: Encoding

3 bites/octant

Ref: Yemez and Schmitt, 1999

Path to a leaf node: 34170332

8 layers = $2^8 \times 2^8 \times 2^8$ cubes Resolution = 1000 mm / 2^8 = ~ 4 mm !!!

Octrees for Progressive Transmission

All data is transmitted at once (Maximum 8 layers):

2⁸ X 2⁸ X 2⁸ cubes * 3 bites/cube * 1 byte/8 bits = ~ 6.3 MB !!

Progressive Transmission: Path to a leaf node: 3 4 1 7 0 3 3 2 1 Layer 1 . . Layer 8

> If we transmit the difference between layer 4 to 5 : ~ 10 KB ! (not even compressed)

A Simple 3D Example:

Input Data:

v1x v1y v1z v2x v2y v2z

• • •

v10x v10y v10z n1x n1y n1z n2x n2y n2z ... n10x n10y n10z

Voxelization

EURON Summer School 2003

Stereoscopic Visualization: Depth Perception

<u>2D:</u>

- Perspective
- Occlusion
- Lighting, shadows
- Relative motion
- Texture

<u>3D:</u>

- Binocular disparity
- Accommodation
- Convergence

EURON Summer School 2003 Stereo Rendering

