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Abstract

In this paper, we characterize the performance of several
business and technical benchmarks on a Pentium Pro
processor based system.  Various architectural data are
collected using a performance monitoring counter tool.
Results show that the Pentium Pro processor achieves
significantly lower cycles per instruction than the Pentium
processor due to its out of order and speculative
execution, and non-blocking cache and memory system.
Its higher clock frequency also contributes to even higher
performance.
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1. Introduction
The Intel Pentium Pro processor was disclosed in
February 1995 at ISSCC [1] and began shipping later that
year. The micro-architecture implements several new
features that are not found in previous implementations of
the Intel Architecture. This paper analyzes the major
performance characteristics of several business and
technical benchmarks on a Pentium Pro processor based
system. Measurements were performed using the built-in
performance counters of the processor. Results are
presented for cycles per instruction, cache miss statistics,
branch prediction statistics, speculative execution, stall
cycles, and other micro-architecture features.

Current literature contains numerous papers that present
simulations of various machine structures. Often these
simulations do not model the entire machine accurately or
only use traces of parts of popular benchmarks. We
present measured characteristics of a recent
microprocessor to allow researchers to calibrate their
theoretical results. The paper presents a lot of raw data
and some analysis wherever possible. In a modern
superscalar out-of-order processor, it is not always
possible to derive precise cause-effect relationships.

Some of the results presented here are consistent with the
behavior of SPEC benchmarks on other architectures, e.g.,

the FP benchmarks have lower Icache misses and higher
Dcache misses than the integer benchmarks. Other
measurements (branch mispredicts, micro-op statistics,
and speculative execution) provide insight into the inner
workings of the Pentium Pro processor.

2. Architectural Features of the
Pentium Pro Processor

The Intel Pentium Pro processor implements dynamic
execution using an out-of-order, speculative execution
engine, with register renaming of integer, floating point
and flags variables, multiprocessing bus support, and
carefully controlled memory access reordering.  The flow
of Intel IA-32 Architecture instructions is predicted and
these instructions are decoded into micro-operations
(uops), or series of uops.  These uops are register-
renamed, placed into an out-of-order speculative pool of
pending operations, executed in dataflow order (when
operands are ready), and retired to permanent machine
state in source program order. This is accomplished with
one general mechanism to handle unexpected
asynchronous events such as mispredicted branches,
instruction faults and traps, and external interrupts.
Dynamic execution, or the combination of branch
prediction, speculation and micro-dataflow, is the key to
its high performance.

Figure 1 shows a block diagram of the processor. The
basic operation of the microarchitecture is as described in
the ISSCC paper [1]:

1. The 512 entry Branch Target Buffer (BTB) helps the
Instruction Fetch Unit (IFU) choose an instruction
cache line for the next instruction fetch.  Icache line
fetches are pipelined with a new instruction line fetch
commencing on every CPU clock cycle.

 
2. Three parallel decoders (ID) convert multiple Intel

Architecture instructions into multiple sets of uops
each clock cycle. Instructions that require more than 4
uops are handled by the microinstruction sequencer.

 



2

3. The sources and destinations of up to 3 uops are
renamed every cycle to a set of 40 physical registers
by the Register Alias Table (RAT), which eliminates
register re-use artifacts, and are forwarded to the 20-
entry Reservation Station (RS) and to the 40-entry
ReOrder Buffer (ROB).

 
4. The renamed uops are queued in the RS where they

wait for their source data - this can come from several
places, including immediates, data bypassed from
just-executed uops, data present in a ROB entry, and
data residing in architectural registers (such as EAX).

 
5. The queued uops are dynamically executed according

to their true data dependencies and execution unit
availability (integer, FP, address generation, etc.).
The order in which uops execute in time has no
particular relationship to the order implied by the
source program.

 
6. Memory operations are dispatched from the RS to the

Address Generation Unit (AGU) and to the Memory
Ordering Buffer (MOB). The MOB ensures that the
proper memory access ordering rules are observed.

 
7. Once a uop has executed, and its destination data has

been produced, that result data is forwarded to
subsequent uops that need it, and the uop becomes a
candidate for "retirement".

 
8. Retirement hardware in the ROB uses uop timestamps

to reimpose the original program order on the uops as
their results are committed to permanent architectural
machine state in the Retirement Register File (RRF).
This retirement process must observe not only the
original program order, it must correctly handle
interrupts and faults, and flush all or part of its state
on detection of a mispredicted branch. When a uop is
retired, the ROB writes that uop’s result into the
appropriate RRF entry and notifies the RAT of that
retirement so that subsequent register renaming can be
activated. Up to 3 uops can be retired per clock cycle.

The Pentium Pro processor implements a 14-stage
pipeline capable of decoding 3 instructions per clock
cycle. The in-order front end has 8 stages. The out-of-
order core has 3 stages, and the in-order retirement logic
has 3 stages. For an integer op, say a register-to-register
add, the execute phase is just one cycle. Floating point
adds have a latency of 3 cycles, and a throughput of 1 per
cycle. FP multiply has a latency of 5 cycles and a
repetition rate of 1 every 2 cycles. Integer multiply has a
latency of 4 cycles and a throughput of 1 every cycle.
Loads have a latency of 3 cycles on a Dcache hit. FDIV is
not pipelined; it takes 17 cycles for single, 32 cycles for

double, and 37 cycles for extended precision. The
processor includes separate data and instruction L1 caches
(each of which is 8KB). The instruction cache is 4-way set
associative, and the data cache is dual ported, non-
blocking, 2-way set associative supporting one load and
one store operation per cycle.  Both instruction and data
cache line sizes are 32 byte wide. More details of the
microarchitecture can be found elsewhere [2].
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Figure 1 Pentium Pro Processor Block Diagram

The secondary cache (L2 cache), which can be either
256KB or 512KB in size, is located on a separate die (but
within the same package).  The L2 cache is 4-way set
associative unified non-blocking cache for storage of both
instructions and data.  It is closely coupled with a
dedicated 64-bit full clock-speed backside cache bus.  The
L2 cache line is also 32 bytes wide. The L2 cache fills the
L1 cache in a full frequency 4-1-1-1 cycle transfer burst
transaction.  The processor connects to I/O and memory
via a separate 64-bit bus that operates at either 60 or 66
MHz. The bus implements a pipelined demultiplexed
design with up to 8 outstanding bus transactions.

3. Performance Monitoring Facility

The Pentium Pro processor implements two performance
counters[3]. Each performance counter has an associated
event select register that controls what is counted. The
counters are accessed via the RDMSR and WRMSR
instructions. Table 1 shows a partial list of performance
metrics that can be measured by selecting the two events
to be monitored.



Table 1.  Pentium Pro Processor Counter based Performance Metrics

Performance Metric Numerator Event Denominator Event

Data references per instruction DATA_MEM_REFS INST_RETIRED
L1 Dcache misses per instruction DCU_LINES_IN INST_RETIRED
L1 Icache misses per instruction L2_IFETCH INST_RETIRED
ITLB misses per instruction ITLB_MISS INST_RETIRED
Istalls cycles per instruction IFU_MEM_STALL INST_RETIRED
L1 cache misses per instruction L2_RQSTS INST_RETIRED
L2 cache misses per instruction L2_LINES_IN INST_RETIRED
L2 Miss ratio L2_LINES_IN L2_RQSTS
Memory transactions per instruction BUS_TRAN_MEM INST_RETIRED
FLOPS per instruction FLOPS INST_RETIRED
UOPS per instruction UOPS_RETIRED INST_RETIRED
Speculative execution factor INST_DECODED INST_RETIRED
Branch frequency BR_INST_RETIRED INST_RETIRED
Branch mispredict ratio BR_MISS_PRED_RETIRED BR_INST_RETIRED
Branch taken ratio BR_TAKEN_RETIRED BR_INST_RETIRED
BTB miss ratio BTB_MISSES BR_INST_DECODED
Branch Speculation factor BR_INST_DECODED BR_INST_RETIRED
Resource stalls per instruction RESOURCE_STALLS INST_RETIRED
Cycles per instruction CPU_CLK_UNHALTED INST_RETIRED

Table 2.  Basic Characteristics of Systems

Processor Intel Pentium Pro Processor Intel Pentium Processor
CPU Core Frequency 150 MHz 120 MHz
Bus Frequency 60 MHz 60 MHz
Data bus 64-bit 64-bit
Address bus 36-bit 32-bit
On-chip L1 cache 8 KB data, 8 KB instruction 8 KB data, 8 KB instruction
Off-chip L2 cache 4-way 256 KB 512 KB (Dell), 256 KB (Gateway)
L2 cache timing 4-1-1-1 @ 150 MHz  CPU freq. 3-1-1-1 @ 60 MHz bus frequency
System Chip Set 82450GX/KX 82430FX
Memory timing
(bus cycles)

14-1-1-1 (4-way interleaving)
14-2-2-2 (2-way interleaving)
14-4-4-4 (no interleaving)

13-3-3-3 (Fast Page Mode DRAM)
13-2-2-2 (EDO DRAM)

Basic Pipeline 14 stages 5 stages
Superscalar 3-way 2-way
Execution units 5 3
Branch prediction 4-way 512 entry BTB,

4-bit history, 2 level adaptive
4-way 256 entry BTB,
2-bit history

Execution model Out of order In order
Speculative Execution Yes No
McCalpin Streams
Memory Bandwidth

140 MB/sec (4-way interleaving)
128 MB/sec (2-way interleaving)
  97 MB/sec (no interleaving)

82 MB/sec (Gateway 2000 P120)

SYSmark/NT rating 497 (Digital Celebris∗ XL6150) 294 (Gateway 2000 P120)
SPECint95 6.08 (Intel Alder System) 3.53 (Dell Dimension XPS P120)
SPECfp95 5.42 (Intel Alder System) 2.92 (Dell Dimension XPS P120)
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4. Comparing the Pentium and
Pentium Pro Processors

This section compares the basic performance
characteristics of the Pentium [4] and Pentium Pro
processors. Table 2 compares the basic characteristics of
these two processors. We chose the 120 MHz Pentium and
the 150 MHz Pentium Pro processors because both are
fabricated in the same 0.6µ technology and use a 60 MHz
external bus.  For the SPEC benchmarks, the Pentium
system was a Dell Dimension XPS P120 with a 512KB
pipelined burst L2 cache, and the Pentium Pro system was
an Intel Alder system with a 150MHz Pentium Pro CPU
with 256KB L2 cache and a 4-way interleaved memory.
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Figure 2 Performance Comparison of Pentium and
Pentium Pro Processors on SPEC95

Figure 2 shows the SPECratios and the cycles per
instruction of the Pentium Pro processor relative to the
Pentium processor for the SPEC95 benchmark suite for
the two systems.  The SPEC* results were obtained using
Intel Reference Compiler 2.3 Beta on UnixWare* v2.0 on
an Intel Alder system. The Pentium Pro processor
achieves CPIs 15% to 50% lower than the Pentium
processor, in spite of the fact that it uses a design style that
emphasizes a fast clock frequency. Designs that emphasize
clock frequency generally result in deeper pipelines and
longer CPI. The Pentium Pro processor design attempts to
increase frequency while reducing CPI, without being
overly focused on optimal CPI or fastest clock [5].

The Pentium Pro processor runs at 1.6 to 2.4 times the
performance of the Pentium processor on the SPEC95
suite[6], achieving 70% higher SPECint95 and 85%
higher SPECfp95. This performance comes from a 25%
faster clock frequency and a 15 to 50% reduction in CPI
compared to the Pentium processor. The Pentium Pro
processor can issue up to 3 instructions every clock cycle,
while the Pentium processor can issue only two. The out
of order execution model of the Pentium Pro processor
also allows useful work to proceed while prior operations
are stalled, thereby lowering the CPI.
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Figure 3 Performance Comparison of Pentium and
Pentium Pro Processors on SYSmark/NT

Figure 3 shows the performance of a 150 MHz Pentium
Pro processor based Digital Celebris 6150 compared to a
120 MHz Pentium processor based Gateway 2000 P120
system on the SYSmark* for Windows NT suite from
BAPCO[7], which contains project management software
(Welcom Software Technology Texim* Project 2.0e),
computer-aided PCB design tool (Orcad MaxEDA* 6.0)
and Microsoft Office* applications for word processing
(Word* 6.0), presentation graphics (PowerPoint* 4.0), and
spreadsheets (Excel 5.0). Both system had a 256KB L2
cache, but the Pentium Pro processor had a faster L2
cache (4-1-1-1 timing at full CPU clock frequency) on its
dedicated L2 cache bus. The Pentium Pro processor runs
29% to 113% faster than the Pentium processor, with an
overall 54% higher SYSmark score.

These results are slightly lower than the SPEC95 results
because the desktop applications in the SYSmark
benchmark perform some I/O operations that include wait
times that do not scale with CPU performance. The SPEC
benchmarks used compilers that generate binaries that are
optimized for each target machine. The SYSmark/NT
benchmarks use old binaries that are not optimized for the
Pentium Pro processor. These benchmarks have large
working set sizes for code and data and also contain many
context switches. The SYSmark/NT benchmarks also
result in higher L2 cache misses as shown in a later
section.
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5. Detailed Characterization of
SPEC CPU95 Benchmarks

This section presents a detailed characterization of
Pentium Pro processor running the SPEC CPU95 suite.
The performance counter measurements presented in the
rest of this paper were done on a Digital Celebris XL6200
running Microsoft Windows*  NT Workstation Version
3.51.  The central processor in the Digital Celebris
XL6200 is a 200MHz Pentium Pro processor with 256KB
L2 cache. The Celebris XL6200 system that we used in
our test was configured with 128MB DRAM with 2-way
interleaving and 14-2-2-2 memory timing at 66 MHz bus
frequency. The SPEC benchmarks were compiled with
Intel FORTRAN and C Reference Compilers Version 2.3.

5.1 Cycles per Instruction

Figure 4 shows the cycles per instruction (CPI) for  the
SPEC95 benchmark suite. Several integer benchmarks
achieve less than one cycle per instruction. The CPIs are
remarkably low for a processor that implements a 14-stage
pipeline. The low CPI is due to the overlapped out-of-
order execution that mitigates the effect of the latency of
individual operations, fast L2 cache, and adaptive two
level branch prediction scheme. The FP benchmarks have
higher CPI due to longer execution latencies and higher
L2 cache misses.
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Figure 4 Cycles per Instruction

We measured the CPI for the processor with 512 KB L2
cache too, by replacing the CPU in the Digital Celebris
system. Only compress (28%), li (5%) su2cor (17%), apsi
(15%), and wave5 (6%) showed more than 5%
improvement in CPI with the larger cache. The L2 miss
ratio reduction was 85%, 89%, 40%, 48%, and 19%

respectively. Simulations show that the CPI would
decrease further for su2cor (25%), apsi (14%), and wave5
(5%) if the 4-way L2 cache is doubled again to 1 MB.

5.2 Instruction Decode

The Pentium Pro processor has 3 decoders that can handle
up to 3 instructions every cycle (one instruction with up to
4 uops, and two single uop instructions)[5]. The decoder
has a 6 uop queue at its output. Only 3 uops can be
renamed per cycle, so the decoder has to stall if the queue
is too full. Figure 5 shows the percentage of cycles in
which 0, 1, 2, or 3 instructions were decoded. Benchmarks
with high Icache or L2 misses show many cycles (35% to
51% for integer, 67% to 83% for FP) in which no
instructions are decoded. During L2 misses, the CPU can
run out of other machine resources causing back pressure
on earlier pipe stages. On the integer benchmarks 33% to
54% of the instructions are decoded in cycles in which 3
instructions are decoded; 25% to 64% for FP benchmarks.
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Figure 5 Instruction Decode Profile

5.3 Cache Misses

The L1 data cache can accept a new load or store every
cycle and has a latency of three cycles for loads. It can
handle as many as four simultaneously outstanding misses.
Figure 6 shows the L1 data and instruction cache misses,
and L2 cache misses. Except for gcc and m88ksim, the L1
data misses are always higher than the L1 instruction
misses. In most cases the L1 instruction misses are so
small that they don’t even show on the scale used in
Figure 6. The integer benchmarks, in general, show much
lower L1 data cache and L2 misses than the floating point
ones (larger data sets); but higher L1 instruction cache
misses (larger code  size and fewer loops). The benchmark
(wave5) with the highest L1 misses does not have the
highest L2 misses. Figure 7 shows a fairly strong
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correlation between L2 misses and CPI, indicating that the
L2 miss latency (about 50 CPU cycles) is not completely
overlapped.
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5.4 TLB Misses
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Figure 8  ITLB Statistics

The Pentium Pro processor has separate TLBs for
instructions and data. The processor also has separate
TLBs for 4-Kbyte and 4-Mbyte page sizes. The ITLB for
4KB pages has 32 entries. The DTLB for 4KB pages has
64 entries.  Both are 4 way set associative. The ITLB for
large pages has 4 entries, while the DTLB has 8 entries;
both are 4-way set associative. As shown in Figure 8, the
ITLB misses are well below 0.1 per thousand instructions,
except for a couple of integer benchmarks. The DTLB
misses are generally higher than ITLB misses, but they
could not be measured accurately. TLB misses do not
contribute much to the CPI, as shown later.

5.5 Memory References
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Figure 9 Memory Reference Statistics

Figure 9 shows the number of data references per
instruction and the number of memory transactions per
thousand instructions. On the average, both the integer and
FP benchmarks generate about 1 data reference every two
instructions. The IA-32 architecture results in more data
references than most RISC architectures because it has
fewer registers (8 vs. 32). As might be expected, there is a
strong correlation between L2 cache misses and memory
transactions. The memory transactions per instruction are
higher for the FP benchmarks due to a higher L2 cache
miss rate. Note that there can be more than one memory
transaction per L2 cache miss if a dirty cache block has to
be written back to memory.

5.6 Branch Prediction

The Pentium Pro processor implements a novel branch
prediction scheme, derived from the two-level adaptive
scheme of Yeh and Patt[8]. The branch target buffer
(BTB) retains both branch history information and the
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predicted branch target address. The BTB contains 512
entries. If a branch is not found in the BTB, a static
prediction (backwards taken, forward not taken) is used.
There is no penalty for correctly predicted not-taken
branches. Correctly predicted taken branches incur a 1
cycle penalty. Mispredicted branches incur a penalty of
about 10-15  cycles, plus additional cycles required to
retire the mispredicted branch.
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Figure 10 Branch Statistics

Figure 10 shows the frequency of branches, fraction of
branches that hit in the BTB, and the accuracy of branch
prediction. Even though the BTB miss ratio is fairly high,
the branch mispredict ratio is less than 10% for all but one
benchmark. The BTB miss ratio is high partly due to the
fact that unconditional branches are not stored in the BTB,
but are included in the total branch instruction count.  As
might be expected, the integer benchmarks contain more
branches than the FP benchmarks, and they incur a higher
branch mispredict ratio (fewer loop branches). The
number of mispredicted branches range from about 2 to 40
per thousand instructions for the integer benchmarks, and
about 0.1 to 4 for the FP benchmarks. For most of the
benchmarks, branch mispredict stalls are not a major
contributor to overall CPI.

5.7 Speculative Execution
The Pentium Pro processor fetches instructions along the
predicted path and executes them until the branch is
resolved. If a branch is incorrectly predicted, the
speculated instructions down the mispredicted path are
flushed. Note that there can be other mispredicted
branches down a mispredicted branch. Figure 11 shows
the average number of instructions issued per retired
instruction for the SPEC benchmarks. There are about 13

to 37 speculated instructions per mispredicted branch.
Mispredicted branches are not recognized for about 10 to
15 cycles, and the processor can issue up to 3 instructions
per cycle. Benchmarks with higher mispredicted branches
per instruction have higher speculated instructions.
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Figure 11  Speculation Factor

5.8 Resource Stalls

Figure 12 shows the I-stream stalls and resource stalls,
measured in terms of the cycles in which the stall
conditions occur. I-stream stalls are caused mainly by I-
cache misses and ITLB misses. Resource stalls show the
number of cycles in which resources like register renaming
or reorder buffer entries, memory buffer entries, and
execution units are full; but these stalls may be overlapped
with the execution latency of previously executing
instructions. The FP benchmarks, except for fpppp (long
basic blocks), incur negligible I-stream stalls. They do
incur significantly more resource stalls than integer
benchmarks, probably due to long dependency chains.
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5.9 Micro-Operations
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The instruction fetch unit fetches 16 bytes every clock
cycle from the I-cache and delivers them to the instruction
decoder. Three parallel decoders decode this stream of
bytes and convert them into triadic uops. Most instructions
are converted directly into single uops, some are decoded
into one-to-four uops, and the complex instructions
require microcode (sequence of uops). Up to 5 uops can
be issued every clock cycle to the various execution units,
and up to 3 uops can be retired every cycle. Figure 13
shows the average number of uops executed per
instruction for each of the SPEC95 benchmarks. The range
is from 1.2 to 1.7, with an average around 1.35.
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Figure 14 Micro-operations retirement profile

Figure 14 shows that no uops are retired in 25% to 55% of
the cycles on the integer benchmarks, and 43% to 82% of
the cycles for FP. Benchmarks with low CPI have fewer
cycles with no uops retired. Furthermore, about 65% and

80% of the uops are retired in cycles in which 3 uops are
retired for the average integer and FP benchmark
respectively. This indicates that executed uops often have
to wait for uops from previous instructions to be ready for
retirement, thereby confirming the value of out of order
execution. These younger uops build up more for FP
benchmarks because of higher cache misses and longer
latencies of FP operations.

5.10 Adding Up the Cycles

Accounting for cycles in an out-of-order machine like the
Pentium Pro processor is difficult due to all the
overlapped execution. It is still useful to examine the
various components of execution and stalls and compare
them to the actual cycles per instruction as shown in
Figure 15. The CPI is about 20 to 50% lower than the
individual components due to overlapped execution. The
figure also shows resource stall cycles in which some
resource such as execution unit or buffer entry is not
available. Execution can proceed during a resource stall
cycle in some other part of the machine. Since more than
one uop can be dispatched in a cycle, the figure does not
account for execution parallelism. Micro-ops seem to
dominate in most integer benchmarks. Resource stalls, and
L2 misses contribute the most to the CPI in the FP
benchmarks. Branch mispredicts are not a major factor.

0

1

2

3

4

5

6

7

8

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rt

ex

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

w
av

e5

C
yc

le
s

-

1

2

3

4

5

6

7

8

UOPS
Resource Stalls
Branch mispredicts
ITLB Misses
DTLB Misses
L2 Misses
L1 Inst Misses
L1 Data Misses
CPI

Figure 15 CPI vs. Latency Components

6. Characteristics Across Different
Workloads

SPEC95 is a popular CPU intensive benchmark suite. It is
widely used to characterize CPU performance. However,



9

the behavior of other workloads can be quite different.
This section presents the characteristics of desktop
applications running on a Pentium Pro processor. In
particular, we present results for the SYSmark/NT
benchmark. These benchmarks are not floating point
intensive; Excel contains about 9% FP instructions,
MaxEDA has 4%, and the rest less than 0.5%. While the
SPEC95 benchmarks were optimized for the Pentium Pro
processor using the latest compilers, the SYSmark/NT
benchmarks are based on old binaries that have been
shipping for many years and were probably not generated
with all optimizations turned on.

In this section, we compare the SYSmark/NT benchmark
statistics with the minimum, median, or maximum for the
SPECint95 and SPECfp95 suites. The data presented here
shows that the SPEC integer benchmarks should not be
used to predict the performance of real business
applications

Figure 16 shows the CPI across different workloads. The
business applications (using old binaries with non-optimal
code) incur higher CPIs than the median for the
SPECint95 benchmarks. Two  of the five SYSmark/NT
benchmarks incur higher CPI than the median observed
for the SPECfp95 suite. The CPI is higher due to higher
L2 miss rates, Istream stalls, and resource stalls.
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Figure 16 CPI for SYSmark/NT

Figure 17 shows the L2 cache misses. The three Microsoft
Office benchmarks incur much higher L2 misses than the
SPECint95 median, but well below the SPECfp95 median.
The code and data sizes of these business applications are
much larger than the SPEC integer benchmarks. Once
again, there is fairly strong correlation between L2 misses
and CPI. Overall, Word and Excel exhibit the highest L2
misses and stall cycles among the SYSmark/NT
benchmarks.
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Figure 17 SYSmark/NT L2 Cache Misses

Figure 18 shows the resource stalls. The SYSmark/NT
benchmarks incur higher resource stalls than the
SPECint95 median, but are well below the SPECfp95
median. The higher resource stalls can be attributed to
higher L2 misses during which the internal resources can
be consumed by instructions waiting to be retired.
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Figure 18 SYSmark/NT Resource Stalls

Figure 19 shows the instruction stalls. They are higher
than the SPECint95 median. Once again, this is due to
higher occurrence of string instructions in Word and Excel
that invoke the microsequencer and require the decoders
to stall. These workloads also have high context switch
activity resulting in ITLB flushes and Icache misses.
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Figure 19 SYSmark/NT Instruction Stalls

Figure 20 shows the uops per instruction. All the
SYSmark/NT benchmarks execute more  uops than most
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of the SPEC95 benchmarks. This is probably due to the
higher use of character string instructions. There is a
strong correlation between uops/instruction and CPI, a
trend not observed in the SPEC95 suite.
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Figure 20 SYSmark/NT Micro-ops Per Instruction

Figure 21 shows the speculation factor. It is in the bottom
half of the distribution for SPECint95. The speculation
factor is lower because there are fewer mispredicted
branches.
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Figure 21 SYSmark/NT Speculation Factor

7. Concluding Remarks

The Pentium Pro processor was designed to achieve
significantly higher performance than the Pentium
processor in the same process technology. It achieves this
performance through a superpipelined design that yields a
25% faster clock, and with an out of order dynamic
execution engine that reduces the CPI. The data presented
here shows that the Pentium Pro processor achieves a 15
to 45% reduction in CPI compared to the previous
generation design (Pentium processor) in the same process
technology, while running at a 25% faster clock
frequency. The processor’s out-of-order, speculative
execution engine does manage to overlap useful work with
pending memory accesses to reduce the impact of cache
misses. The impact of resource stalls is also reduced by
out of order execution. The branch prediction scheme

reduces branch mispredictions so as not to make them a
significant performance limiter. It performs well even on
old binaries that were not optimized for its
microarchitecture. Performance counter based
measurements show that the overall CPI achieved by the
Pentium Pro processor is about 20 to 50% lower than the
individual latency components due to overlapped
execution.

A detailed comparison of the Pentium Pro processor and
Digital’s Alpha 21164 RISC processor is reported in
another study [9].
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