64-041 Übung Rechnerstrukturen und Betriebssysteme

Aufgabenblatt 6 Ausgabe: 17.11., Abgabe 26.11.2025 24:00

Gruppe	
Name(n)	Matrikelnummer(n)

Aufgabe 6.1 (Punkte 10+5+5+5+5)

Bildformate / Bitwise Logical Operations: Zur Farbdarstellung auf dem Monitor kommt bei aktuellen Rechnern oft das RGB-888 Format zum Einsatz, mit jeweils 8-bit für den Rot-, Grün- und Blauanteil jedes Bildpunktes (0=schwarz, 255=hell) in einem 24-bit oder 32-bit Integerwert.

(a) Geben Sie die Pixel-/ Farbwerte für die folgenden Farben in Hexadezimaldarstellung an:

```
Farbe: RGB-888 (hex) RGB-565 (hex)
black: 0x000000
white:
teal: (50% green 50% blue)
UHH-ROT: (rgb 226 / 0 / 26)
UHH-BLAU: (rgb 2 / 113 / 187 )
UHH-STEINGRAU: (rgb 59 / 81 / 91 )
```

Die Farbdefinitionen für das "Corporate Design" der Uni Hamburg können Sie bei Interesse hier nachlesen: https://www.fid.uni-hamburg.de/corporate-manual.pdf

(b) Einige Farbdisplays (bzw. deren Controller-Chips) unterstützen statt dessen nur das RGB-565 Format, mit 5-bit für Rot, 6-bit für Grün, und 5-bit für Blau, gepackt als 16-bit Integerwert. Geben Sie an, wie RGB-888 und RGB-565 mit bitweisen Operationen ineinander umgewandelt werden können (beide Richtungen):

```
int rgb888( int pixel ) { // convert pixel from RGB-565 to RGB-888
  return ?
}
int rgb565( int pixel ) { // convert pixel from RGB-888 to RGB-565
  return ?
}
```

- (c) Ergänzen Sie die am besten passenden 565-Werte in der obigen Tabelle.
- (d) Begründen Sie kurz, warum bei RGB-565 der Grünwert (mit 6-bit) bevorzugt wird? Warum nimmt man nicht RGB-484?

(e) Für Webanwendungen gibt es das "Web-Safe Colors" System, mit jeweils sechs Helligkeitswerten {0,0.2,0.4,0.6,0.8,1.0} (bzw. [0,0x33,0x66,0x99,0xCC,0xFF]) für die drei Grundfarben. Wie viele Farben können mit diesem System kodiert werden? Geben Sie die Indexwerte und die zugehörigen RGB888 Farbwerte für die möglichen neutralen Grautöne an.

Aufgabe 6.2 (Punkte 10+5)

Base-64 Codierung: Wie in der Vorlesung skizziert, werden bei der Base-64 Codierung jeweils drei 8-bit Eingangswerte durch vier 6-bit Integerwerte ersetzt, die dann zur Datenübertragung via Table-Lookup als (7-bit) ASCII-Zeichen codiert werden. Für diese Aufgabe ignorieren wir den Spezialfall, dass am Ende der Codierung eventuell nur noch ein oder zwei Inputwerte zur Verfügung stehen.

(a) Beschreiben Sie durch logische- und Schiebe-Operationen, wie bei der Base-64 Codierung die vier 6-bit Indexwerte aus den drei Eingabezeichen a1,a2,a3 berechnet werden:

```
uint8_t base64_[65] = {'A',...,'Z','a',...,'z','0',...,'+','/','=' };

uint8_t a1, a2, a3; // drei 8-bit Eingabewerte
uint8_t b1 = ?
uint8_t b2 = ?
uint8_t b3 = ?
uint8_t b4 = ?

uint8_t o1 = base_64_[ b1 ];
uint8_t o2 = base_64_[ b2 ];
uint8_t o3 = base_64_[ b2 ];
uint8_t o4 = base_64_[ b2 ];
```

(b) Beschreiben Sie umgangssprachlich im Detail (oder gerne auch mit zugehörigem Programmcode), wie die Decodierung eines empfangenden Zeichens ('A'...'=') abläuft.

Aufgabe 6.3 (Punkte 15)

Bitwise Logical Operations: Was wäre ein sprechender Name für die folgende C-Funktion f()? Erläutern Sie Schritt für Schritt, zum Beispiel durch passende Kommentare, wie das funktioniert:

Aufgabe 6.4 (Punkte 5+5)

Winkelcodierscheibe / Einschrittige Codes: Für eine Winkelcodierscheibe mit 6 ° Grad Auflösung soll ein einschrittiger zyklischer Binärcode entwickelt werden.

- (a) Wie viele Codewörter hat der Code?
- (b) Entwickeln Sie einen Code mit dem rekursiven Verfahren aus der Vorlesung.

Aufgabe 6.5 (Punkte 5+15+5+5)

Entropie / Fano Codierung: Die folgenden 10 Symbole a_i sind mit ihren Wahrscheinlichkeiten $p(a_i)$ in der Tabelle angegeben:

• • • •		Ü	Ü							
a_i	a	b	c	d	e	f	g	h	i	j
$p(a_i)$	0,14	0,02	0,08	0,3	0,01	0,05	0,1	0,15	0,06	0,09

- (a) Wie groß ist der mittlere Informationsgehalt (die Entropie) H dieser Symbole?
- (b) Geben Sie eine Fano-Codierung für diese Symbole an.
- (c) Welche mittlere Codewortlänge H_0 ergibt sich?
- (d) Wie groß ist die Redundanz $(H_0 H)$ ihres Codes?