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π0.5: VLA Model for Open-World Tasks
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Key Capabilities of π0.5:
Open-World Generalization: Executes tasks in unknown
environments (e.g., different home scenes).
Multimodal Training: Joint optimization of images, language, and
action trajectories in an end-to-end manner.
Task Planning Ability: Automatically decomposes complex
instructions and generates action sequences.

Experimental Performance:
¥ Successfully completes multi-step complex tasks like cleaning
kitchens and wiping surfaces.
¥ Adapts flexibly to real-world changes in layout and target objects.
q Has difficulty opening unfamiliar drawers or cabinets.
q Currently handles only relatively simple prompts: e.g., repeatedly
opening and closing drawers in long item-cleanup tasks.

Click Here to Watch the Video
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Relationship Between LLM and Robotics Actions
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Large Language Model (LLM)

Vision Language Model (VLM)

World Model Vision Language Action (VLA)

Diffusion Policy (DP)
(comparative method)

AddingPhysical Properties

Alignment

Foundation Models

Regression & Diffusion
One is predict the step by step action sequence, the other is to generate
the whole action sequence in one step.
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From LLM to MLLM
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Figure: Source: "Mm-llms: Overview Architecture in MLLM" [8]
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Extending Language Models: Code As Policies
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Providing Fundamental
Functional Modules (APIs):
Clearly defined interfaces
including Perception APIs and
Control APIs.
High-Level Planning: LLMs
treat these APIs as available
tools and use natural language
to generate instruction flows or
policies to accomplish tasks.

Source: Code as Policies (CaP) [5]
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Extending Vision-Language Models
(Generalization-Enhanced): VoxPoser
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Vision-Language Model (VLM) as
Backbone: Equipped with zero-shot
generalization ability, capable of
understanding and handling relative
spatial relationships such as "above",
"below", "high", and "low".
Voxel Affordance-Based Spatial
Representation: Identifies key anchor
locations in 3D space through voxel
analysis, enhancing generalization and
reliability in task execution.

Click Here to Watch the Demo Video

Source: VoxPoser [4]
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World Models (Enhanced with Physical Knowledge):
Cosmos
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Cosmos [10] is a world model framework proposed by NVIDIA,
consisting of three sub-models:

j Cosmos-Predict1: A collection of general-purpose world
foundation models used for modeling and predicting the physical world,
with the ability to fine-tune for specific applications.
L Cosmos-Transfer1: Helps bridge the perception gap between
simulation and real-world environments by generating more realistic
synthetic data, supporting more effective training of the Predict model.
« Cosmos-Reason1: Incorporates physical attribute training data in
the third stage of fine-tuning to enable deeper physical commonsense
reasoning, generating embodied decisions and natural language
explanations.
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World Models (Enhanced with Physical Knowledge):
Cosmos (cont.)
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Synergy of the three: A comprehensive world modeling system
for embodied intelligence

Ô
Simulator

Generates environment
interaction scenarios

«
Reason

High-level task plan-
ning and control

L
Transfer

Realistic data synthesis
Data augmentation

j
Predict

Physical state mod-
eling and simulation

Reinforcement
Learning (RL)

Behavior training and
policy optimization

World Model
Perception × De-

cision × Prediction
Powers embodied intelligence

Scenario Data Control and Prediction Calls

Data Augmentation State Output Policy Results
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Reasoning Model (Cosmos Reason1)
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Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning

Input Video

Vision Encoder

Projector Video 
Tokens

Text 
Tokens

Input Text

What’s the next action?

LLM (Hybrid)

Output

<think>
Okay, let's see. 

The video shows a robot 
has just grabbed a red 
apple in its right hand 
from a wooden shelf ...

</think>

Put the apple in the 
right hand into the bag 

on the table.

Self-Attention Layer
MLP Layer
Mamba Layer

LLM (Dense)

Figure 3: An illustration of our multimodal large language model architecture. Given an input video and an
input text prompt, the video is projected into the LLM’s token embedding space as video tokens by a vision
encoder followed by a projector. The text tokens are concatenated with the video tokens and fed into the LLM
backbone, a dense Transformer or a hybrid Mamba-MLP-Transformer architecture. Our model can output
responses with long chain-of-thought reasoning processes.

Table 3: Configuration details of Cosmos-Reason1 models.

Configuration Cosmos-Reason1-7B Cosmos-Reason1-56B
Vision Encoder

Architecture ViT-676M ViT-300M
Input Size Dynamic 448 → 448
Patch Size 14 → 14 14 → 14
Number of Layers 32 24
Model Dimension 1,280 1,024
FFN Hidden Dimension 3,456 4,096

Projector
Downsampling (HxWxT) 2 → 2 → 2 2 → 2 → 1
Number of Layers 2 2
Input Dimension 1,280 4,096
Hidden Dimension 5,120 32,768
Output Dimension 3,584 8,192

LLM Backbone
Architecture Transformer Mamba-MLP-Transformer
Number of Layers 28 118
Model Dimension 3,584 8,192
FFN Hidden Dimension 18,944 32,768
Number of Attention Heads 28 64

models, making it significantly more e!cient for handling long sequences. In practice, the selective state spaces
of Mamba may not be su!cient to capture every detail within long sequences. To address this, a small portion of
Transformer layers is incorporated for long-context modeling, giving rise to the hybrid Mamba-MLP-Transformer
architecture (Wale"e et al., 2024).

7

Figure: Cosmos-Reason1 Architecture Diagram [12]

S. Liu – World Model & Embodied AI 10 / 29



Transfer Model (Cosmos Transfer1)
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Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control

Table 1: Quantitative evaluation on TransferBench for various Cosmos-Transfer1 configurations. We
compare single control models (each conditioned on a single modality) with multimodal variants that use
spatially uniform weights. For the multimodal cases, “Cosmos-Transfer1-7B, Uniform Weights” denotes the
full model that integrates all four control modalities (each weighted at 0.25), while variants such as “Cosmos-
Transfer1-7B, Uniform Weights, No Vis” exclude a specific modality (here, the blur visual control), with the
remaining modalities retaining equal weights. Best results are in bold; second-best are underlined.

Model

Vis
Alignment

Edge
Alignment

Depth
Alignment

Segmentation
Alignment Diversity Overall

Quality
Blur

SSIM →
Edge
F1 →

Depth
si-RMSE ↑

Mask
mIoU →

Diversity
LPIPS →

Quality
Score →

Cosmos-Transfer1-7B [Vis] 0.96 0.16 0.49 0.72 0.19 5.94
Cosmos-Transfer1-7B [Edge] 0.77 0.28 0.53 0.71 0.28 5.48
Cosmos-Transfer1-7B [Depth] 0.71 0.14 0.49 0.70 0.39 6.51
Cosmos-Transfer1-7B [Seg] 0.66 0.11 0.75 0.68 0.42 6.30
Cosmos-Transfer1-7B Uniform Weights, no Vis 0.68 0.13 0.57 0.67 0.37 8.02
Cosmos-Transfer1-7B Uniform Weights, no Edge 0.81 0.10 0.53 0.66 0.31 7.68
Cosmos-Transfer1-7B Uniform Weights, no Depth 0.83 0.15 0.52 0.69 0.25 7.49
Cosmos-Transfer1-7B Uniform Weights, no Seg 0.84 0.15 0.43 0.70 0.23 7.83
Cosmos-Transfer1-7B Uniform Weights 0.87 0.20 0.47 0.72 0.22 8.54

Modality

Generated

Control Weights

⊕
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ge
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h
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“A man is working in a well-organized bicycle repair shop, 
focusing on maintaining a bicycle mounted on a repair stand. The 
shop is equipped with various tools and equipment, including 
shelves filled with parts and accessories, and a workbench with 
neatly arranged tools...”

Figure 6: Diagram of spatiotemporal control weighting by di!erent modalities (Vis, Edge, Depth and
Segmentation). The control weight maps are 0.0 in black pixel areas, and 0.5 in white areas. We note that
while the caption broadly specifies a bicycle repair shop scene, the blue shirt with a white logo and the skin
color of the man are maintained, due to these pixels being controlled by Vis and Edge. On the other hand, for
the background controlled by Depth and Segmentation, the objects are positioned in the scene consistently but
have their colors and textures randomized (e.g. red toolbox, yellow tripod, white repair stand). A new tool
rack on the wall on the right is also added by the model.

and a weight of 0.5 to depth and segmentation respectively in the background. While a multitude of heuristics
could be used, we choose this composition strategy to exemplify a situation in which the user wants to have close
resemblance to the original videos for the salient objects in the scene but generate more diverse videos in the

10

Figure: Concept Diagram of Cosmos Transfer1 [11]
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Data Generation with Cosmos Transfer1
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots ReferenceCosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control

Input

Prompt 2Prompt 1 Prompt 3

Single
Control

Multimodal 
Control

Output

Single
Control

Multimodal 
Control

Single
Control

Multimodal 
Control

Figure 8: Example results of Cosmos-Transfer1 for robotic data generation. The left column displays input
videos generated by NVIDIA Isaac Lab, while the right three columns show results from Cosmos-Transfer1-7B
with di!erent condition modalities and spatiotemporal control maps. For each example, the top row (single)
uses Segmentation as the condition modality with an overall constraint weight of 1. The bottom row combines
Segmentation, Edge, and Vis as conditions, applying a spatiotemporal control map scheme. Specifically, a
combination of Edge, Segmentation and Vis are used with a customized control weight on the foreground
(robot region), while only segmentation with a control weight of 1 is applied to the background. These
results demonstrate that Cosmos-Transfer1-7B with the spatiotemporal control map enhances the fidelity of
the foreground robot.

the consistency between simulated and generated videos. As observed, single-modal Cosmos-Transfer1-7B
models tend to yield higher scores for the corresponding metrics (e.g., Cosmos-Transfer1-7B [Vis] achieves the
highest Blur SSIM) but result in a lower Quality Score than those from Cosmos-Transfer1-7B under the adaptive
multimodal control settings. Cosmos-Transfer1-7B [Seg] produces higher Quality Scores and the highest
Diversity-LPIPS but exhibits lower performance in Blur SSIM, Edge F1, and Mask mIoU, which suggests that
Cosmos-Transfer1-7B [Seg] can generate diverse backgrounds but may introduce artifacts into the foreground
robot. Overall, the two Cosmos-Transfer1-7B model settings are among the top three in Quality Score, Diversity-
LPIPS, and FG Mask mIoU, while o!ering a more balanced performance across Blur SSIM, Edge F1, and Mask
mIoU, which shows Cosmos-Transfer1-7B with spatiotemporal control map has better overall video quality,
diversity, and the preservation of foreground robots. These statistical findings are further illustrated in the

13

Figure: Workflow of Synthetic Data Generation Using Cosmos Transfer1 [11]
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Prediction Model (Cosmos Predict1)
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Cosmos World Foundation Model Platform for Physical AI

various autonomous driving-related tasks.

Our intended use of the developed WFMs is for Physical AI builders. To better protect the developers when
using the world foundation models, we develop a powerful guardrail system that consists of a pre-Guard to
block harmful inputs and a post-Guard to block harmful outputs. The details are described in Sec. 7.

We aim to build a world foundation model platform to help Physical AI builders advance their systems. To
achieve this goal, we make our pre-trained world foundation models and tokenizers available under the NVIDIA
Open Model License at NVIDIA Cosmos. While this paper makes several improvements in world foundation
model design, the world foundation model problem is still far from being solved. Additional research is required
to advance the state-of-the-art further.

2. World Foundation Model Platform
Let x0:t be a sequence of visual observations of the real world from time 0 to t. Let ct be the perturbation to the
world. As illustrated in Fig. 3, a WFM is a model W that predicts the future observation at time t + 1, x̂t+1,
based on the past observation x0:t and the current perturbation ct. In our case, x0:t is an RGB video, while ct is
a perturbation that can take many forms. It can be an action taken by the Physical AI, a random perturbation,
a text description of the perturbation, etc.

x0:t

World Foundation Model: W
ct

x̂t+1

Figure 3: A world foundation model (WFM) W is a model that generates the future state of the world xt+1

based on the past observations x0:t and current perturbation ct.

2.1. Future Cosmos
We believe a WFM is useful to Physical AI builders in many ways, including (but not limited to)

• Policy evaluation. This refers to evaluating the quality of a policy model in a Physical AI system. Instead
of evaluating a trained policy by deploying it to a Physical AI system operating in the real world, one
could instead let the digital copy of the Physical AI system interact with the world foundation model. The
WFM-based evaluation is more cost-e!ective and time-e"cient. With the WFM, builders can deploy the
policy model in unseen environments that are otherwise unavailable. WFMs can help developers rule out
incapable policies quickly and focus the physical resources on a few promising ones.

• Policy initialization. A policy model generates actions to be taken by the Physical AI system based on
the current observations and the given task. A well-trained WFM, which models the dynamic patterns of
the world based on the input perturbations, can serve as a good initialization of the policy model. This
helps address the data scarcity problem in Physical AI.

• Policy training. A WFM paired with a reward model can be a proxy for the physical world to provide
feedback to the policy model in a reinforcement learning setup. The agent can gain proficiency in solving
tasks by interacting with the WFM.

• Planning or model-predictive control. A WFM can be used to simulate di!erent future states following
di!erent action sequences taken by a Physical AI system. A cost/reward module can then be used to
quantify the performance of these di!erent action sequences based on the outcomes. The Physical AI
can then execute the best action sequence based on the simulation results as a whole, as in planning
algorithms or in a receding horizon manner, as in model-predictive control. The accuracy of the world
model upper-bounds the performance of these decision-making strategies.

4

Overview of Inputs and Outputs in
Cosmos Predict1 [10] Animation: Simulated Output

Sequence of the Prediction Model

Used for RLAIF (Reinforcement Learning with AI Feedback).
Provides environment simulation and feedback signals to help the
reasoning model explore as many future paths as possible while
filtering out infeasible options.
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Interim Summary
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

The evolution of Multimodal Large Language Models (MLLMs) has
expanded generalization capabilities: the more modalities, the
stronger the generalization.
We can leverage the successful experiences of MLLMs to build world
models required for embodied intelligence.
A world model integrates:

High-level physical planning engines (for abstract decision-making and
task decomposition);
Low-level reasoning and state prediction modules;
Scheduled model-based methods to support robots in executing
long-horizon, complex tasks.
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VLA
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

VLA (Vision-Language-Action) is an extended form of
Multimodal Large Language Models (MLLMs).
Input: Multi-view visual scenes + instruction-based language
descriptions
Output: Rotation angles (in radians) for each joint servo.
In robotic manipulation tasks, the VLA framework has been widely
adopted:

RDT from Tsinghua University [6] (Robotics Diffusion Transformer)
GR00T from NVIDIA [13] (Generalist Robot)
The π series models from Physical Intelligence [15]
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Vision-Language Navigation (VLN): Navid Framework
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Overview
It integrates multimodal inputs to guide agents navigating through
complex indoor environments. [9]

Command
+ 

Image

Text Token
+

Image Token

Action Token
[Zhang et al. ArXiv 2024]
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VLN: UniGoal
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

UniGoal Method
UniGoal uses scene graphs as additional prior knowledge to improve
navigation performance. [14]

Click Here to Watch Demo Video
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Recap Transformer Architecture
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Core Idea
Models relationships between
words in a sequence using
attention mechanisms.
Fully based on attention — no
RNNs or CNNs.

Basic Components:
Encoder: Understands the
input content.
Decoder: Generates the
output.
The two are connected
through the attention
mechanism.

Transformer Architecture [1]
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Self-Attention

Multi-Head Attention

Understanding the Self-Attention
Mechanism

Tokenizing: Converts input text into
tokens (numerical representations).

Self-Attention Task:

Use input to formulate a query
(Q).
Compare the query with keys
(K) to measure relationships
among words.
Apply a mask to exclude padding
or future tokens (if decoding).
Normalize using SoftMax to
compute attention weights.
Multiply attention weights with
values (V) to obtain new
contextualized embeddings.

Multi-Head Attention: Combines
multiple attention heads to learn
different aspects of the input context.



Introduction to Linear Attention [2]
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Inspired by sequence processing
in RNNs.
Reduces from O(N2) to O(N).

Advantages: Efficient and
suitable for modeling long
sequences.
Limitations: Lacks reflection
(reverse context integration),
which restricts performance.
Further Development:

In 2023, Mamba [3] was
proposed, combining state
space models to address
limitations.
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Mamba and Mamba2
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Mamba reintroduces the reflection mechanism on top of linear
attention.
Mamba2 further addresses efficiency bottlenecks in parallel training.
The Mamba series significantly outperforms traditional Transformers
in terms of speed.
It also surpasses Transformers in performance across multiple tasks.

Model Speed Comparison Model Accuracy Comparison
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DeltaNet[7]: Update Rule as Gradient Descent -> Test
Time Training (TTT)
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Loss Function and Gradient:

Lt(H) =
1
2∥Hkt − vt∥2, ∇Lt(Ht−1) = (Ht−1kt − vt)k⊤

t

Update Derivation:
Start: Ht = Ht−1 + vtk⊤

t

Rewrite: Ht = Ht−1 − vt,oldk⊤
t + vtk⊤

t

with: vt,old = Ht−1kt

Add LR: Ht = Ht−1 − βtvt,oldk⊤
t + βtvtk⊤

t

Substitute: Ht = Ht−1 − βtHt−1ktk⊤
t + βtvtk⊤

t

Final: Ht = Ht−1 − βt(Ht−1kt − vt)k⊤
t

Gradient Descent Structure:
Ht︸︷︷︸

updated

= Ht−1︸ ︷︷ ︸
old

− βt︸︷︷︸
LR

· (Ht−1kt − vt)k⊤
t︸ ︷︷ ︸

gradient

Goal: Improve H so that projection of kt approximates vt better.
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Liquid Neural Networks (LNN)
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Inspired by the Reservoir
Computing architecture.

Advantage
Most low-weight neurons can
self-suppress under input
variation and are excluded from
computation, improving energy
efficiency.

Limitation: Scalability and
performance optimization of
the network remain active
research challenges.

Figure: Figure: Schematic Diagram of the
LNN Architecture
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Summary: Comparison of Transformer and Its Successors
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

Model Complexity Capability Efficiency Performance
Transformer O(N2) Moderate Medium Baseline
Linear Attention O(N) Stronger High Close to Transformer
Mamba O(N) Strong Very High Often Outperforms Transformer
TTT O(N) Strong Very High Outperforms Mamba
LNN O(N) (Dynamic) Very Strong Extremely High Leads in some tasks

Meta DeepSeek MiniMax Liquid AI
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Challenges Faced by Robots
Introduction Overview Transformer and it’s competitors Challenges Faced by Robots Reference

MLLM
 (<7B, <2Hz)

MLLM 
(>=70B)

Robot

Action Model 
(20+Hz)

15T (Million Million)

10 Million

cerebrum

Real-World

World Model
Fast Response

RLAIF

Act

Model-Based 
Models

Better Algorithm

cerebellum

Life-Long Learning

Body Balance

Movement
Coordination

State 
Estimation

Scene Understanding

Reasoning

Decision Making

Pattern Recognition

Cloud Brain World Communication

Brain Update

Image from FigureAI
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