

Deep Learning Based Measurement Model for Monte Carlo Localization in the RoboCup Humanoid League

Jasper Güldenstein

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften **Fachbereich Informatik**

Technische Aspekte Multimodaler Systeme

7. Mai 2024

- 1. Motivation
- 2. Particle Filter Introduction
- 3. Related Work
- 4. Baseline
- 5. Approach
- 6. Evaluation
- 7. Conclusion
- 8. References

Motivation

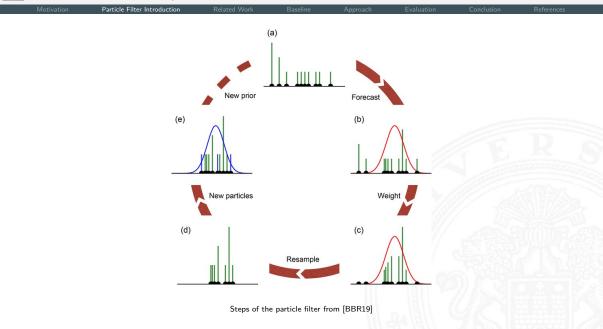
Source: bit-bots.de

Particle Filter

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References

- approximate belief about state with particles
- update particles
 - prediction
 - measurement
 - resampling
- state here: (x, y, θ)

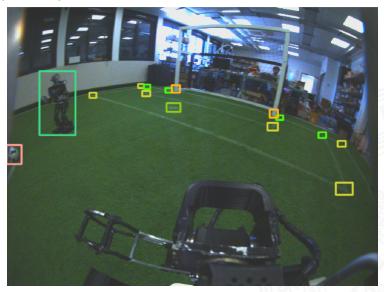
Particle Filter steps



Related Work - RoboCup

			Related Work						
--	--	--	--------------	--	--	--	--	--	--

▶ Rhoban [ABB⁺24] - field features and goalposts

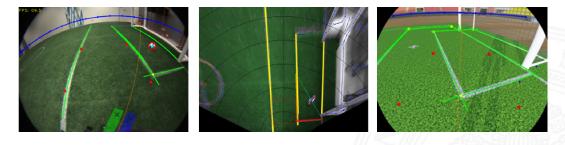


	Related Work			

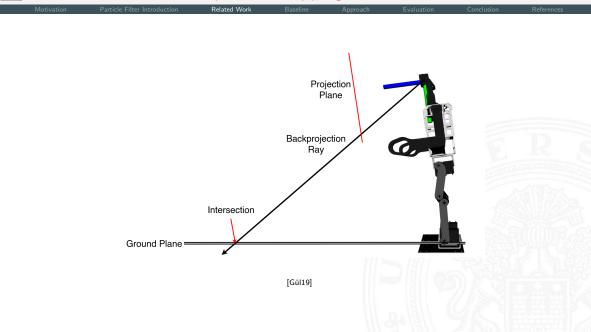
► CIT [HKK⁺23] - lines and goalposts

	Related Work			

▶ StarKit [DKL⁺22] - Hough Transformed Lines

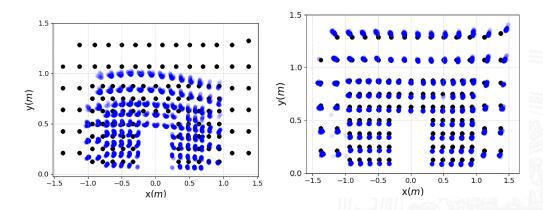


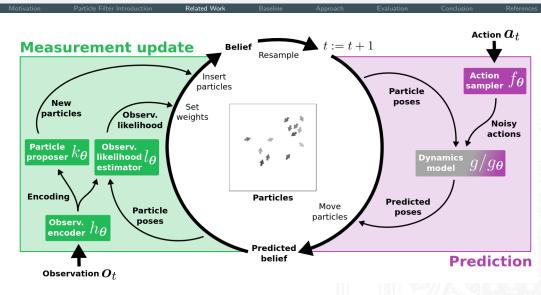
Interlude - Inverse Perspective Mapping



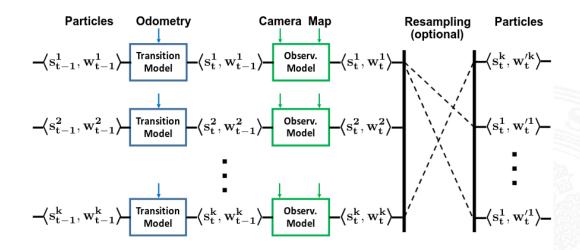
	Related Work			

Reprojection Problematic [dSdAMY⁺24]





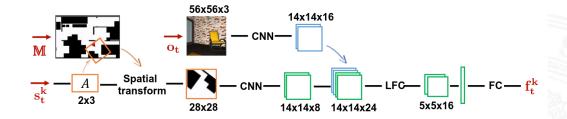
Jonschkowski et al.: Differentiable Particle Filters[JRB18]



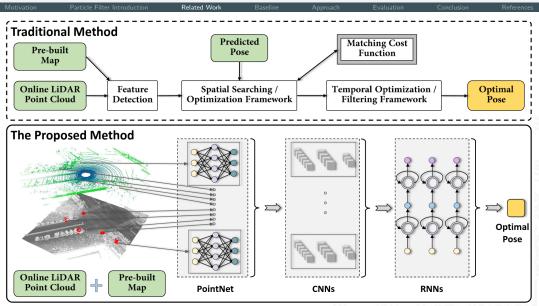
Karkus et al.: Particle Filter Networks with Application to Visual Localization [KHL18]

Related Work

	Related Work			



Karkus et al.: Particle Filter Networks with Application to Visual Localization [KHL18]



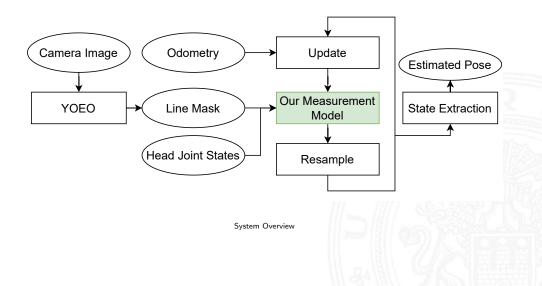
Lu et al.: L3-Net: Towards Learning based LiDAR Localization for Autonomous Driving [LZW⁺19]

Baseline Example

Motivat	on Particle Filter Introductic	n Related Work	Baseline	Approach	Evaluation	Conclusion	References	
				Ø				

Robot incorrectly localized using baseline approach.

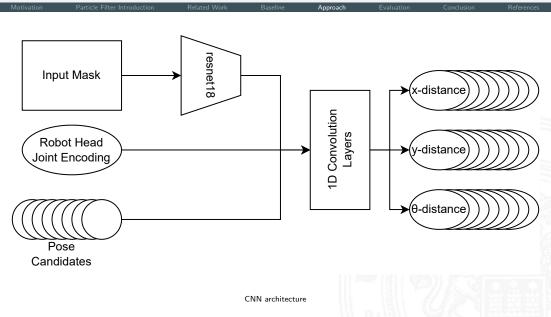
		Approach		



Approach - Example Input

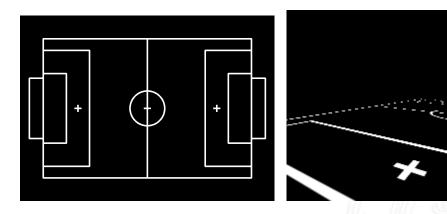
Example YOEO [VGBZ21] output image

Approach - Network Architecture

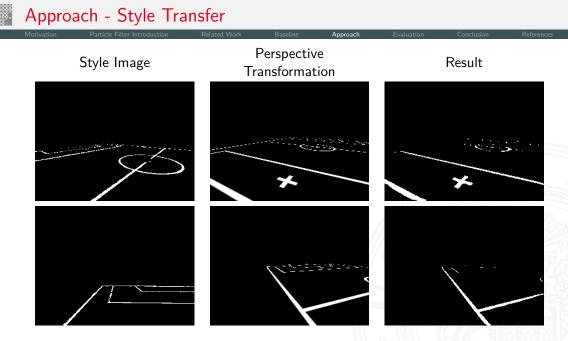


Approach - Data Generation

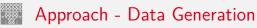
Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References



Data Generation



Style transfer using CAST [ZTD⁺23]



		Approach		

- draw 128 poses from normal distribution around generation pose
- calculate distances Δx , Δy , Δyaw as labels

Approach - Training

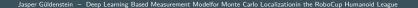
Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References

- ► ~8 hours on perspective transformation
- ▶ ~12 hours fine tuning on style transfer (mostly caused by inefficient programming)
- on RTX4090

Approach - Integration

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References

- Serialize PyTorch model using TorchScript
- C++ Torch bindings
- more painful than you think



$$\omega_{p} = \frac{1}{|\Delta x_{p}| + |\Delta y_{p}| + |\Delta y a w_{p}|}$$

- ω_p weight of particle p
- Δx_p estimated linear distance in x direction between particle and robot pose
- Δy_p estimated linear distance in y direction between particle and robot pose
- Δyaw_p estimated angular distance around z axis between particle and robot pose

Approach - Video

						Approach			
--	--	--	--	--	--	----------	--	--	--

Video Time

Jasper Güldenstein - Deep Learning Based Measurement Modelfor Monte Carlo Localizationin the RoboCup Humanoid League

Evaluation

			Evaluation	

Three experiments

- Global Localization
- Pose Tracking
- ► Angular Error

Evaluation Environment

			Evaluation	

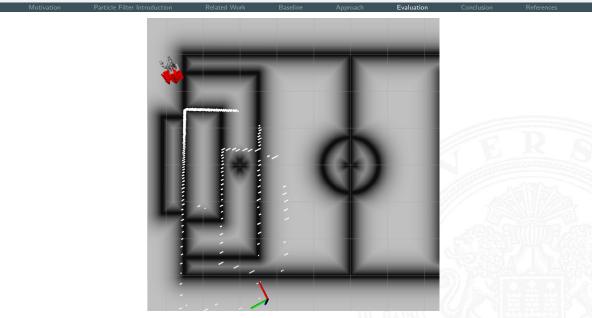
- 1. Robot is placed at random pose
- 2. Particle filter is initialized
- 3. 10 seconds is allowed for convergence
- 4. Distance between particle filter estimate and ground truth is measured

Global Localization - Initialization

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References
					ŀ		

Particles after initialization on one field half.

Global Localization - Example



Robot incorrectly localized using baseline approach.

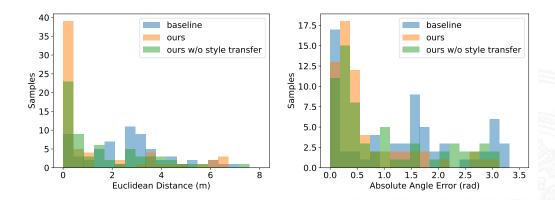
Global Localization - Example

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References
				Ø			

Robot correctly localized

Global Localization - Results

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References



Quantitative results for global localization.

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References

Performance of the global localization experiment for Euclidean distance error d and absolute angle error α .

Approach	median <i>d</i>	mean <i>d</i>	σ d	median α	mean α	σd
Baseline	2.711	2.605	1.672	1.475	1.347	1.078
Ours w/o style transfer	0.793	1.660	1.723	0.467	0.961	0.948
Ours	0.263	1.332	1.982	0.383	0.669	0.737

Pose Tracking - Example

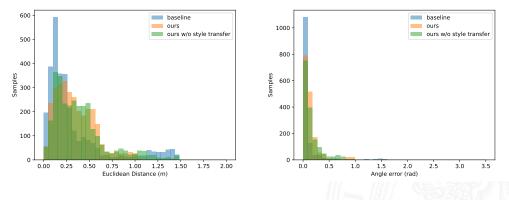
Motivation	Particle Filter Introduction	Related Work	Baseline Approach		Conclusion	References	
				+			
		Example trajectory of	the Pose Tracking expe	riment			

Pose Tracking - Experiment Setup

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References

- 1. Robot is placed at random pose
- 2. Localization is initialized and allowed to settle
- 3. Sequence of generated velocities is commanded to walking engine
- 4. Pose produced by localization and ground truth is measured each step

		Evaluation	



Quantitative pose tracking localization.

			Evaluation	

Performance of the pose tracking experiment for Euclidean distance d and absolute angle error α .

Approach	median <i>d</i>	mean <i>d</i>	σ d	median α	mean α	σ d
Baseline	0.201	0.331	0.353	0.043	0.100	0.228
Ours w/o style transfer	0.329	0.393	0.286	0.088	0.140	0.209
Ours	0.307	0.346	0.211	0.077	0.110	0.167

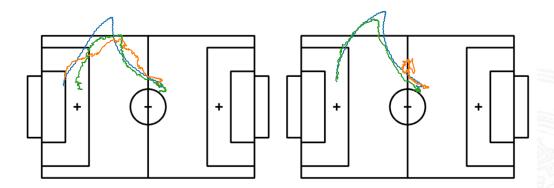
Angular Error - Motivation

			Evaluation	

- Baseline approach relies on good calibration
- \blacktriangleright Many falls \rightarrow bad calibration
- Especially problematic for long distance measurements

Angular Error - Example Pose Tracking

Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References



Ground truth blue, ours green, baseline orange

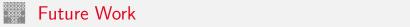
Head Tilt Error	Approach	median <i>d</i>	mean <i>d</i>	σd	median α	mean α	σ d
0°	Baseline	0.201	0.331	0.353	0.043	0.100	0.228
0	Ours	0.307	0.346	0.211	0.077	0.110	0.167
 3°	Baseline	0.229	0.402	0.416	0.047	0.166	0.505
3	Ours	0.334	0.393	0.254	0.075	0.122	0.208
-3°	Baseline	0.245	0.393	0.461	0.045	0.116	0.240
-5	Ours	0.316	0.440	0.920	0.080	0.115	0.164
5°	Baseline	0.530	0.826	0.756	0.179	0.404	0.706
5	Ours	0.364	0.436	0.334	0.085	0.148	0.227
-5°	Baseline	0.384	0.702	0.738	0.105	0.186	0.266
-5	Ours	0.369	0.413	0.270	0.092	0.135	0.189

Evaluation

Conclusion

I	Motivation	Particle Filter Introduction	Related Work	Baseline	Approach	Evaluation	Conclusion	References

- better global localization
- worse performance in pose tracking in idealized conditions
- better robustness to significant angular error
- (better computational performance)



			Conclusion	

- introduce IMU measurement to better take orientation into account in network
- vision transformers
- style transfer and deploy on real robot

[ABB⁺24] Julien Allali, Adrien Boussicault, Cyprien Brocaire, Céline Dobigeon, Marc Duclusaud, Clément Gaspard, Hugo Gimbert, Loïc Gondry, Olivier Ly, Grégoire Passault, and Antoine Pirrone, *Rhoban football club: Robocup humanoid kid-size 2023 champion team paper*, RoboCup 2023: Robot World Cup XXVI, Springer Nature Switzerland, 2024.

- [BBR19] Daniel Berg, Hannes Bauser, and Kurt Roth, *Covariance resampling for* particle filter – state and parameter estimation for soil hydrology, Hydrology and Earth System Sciences **23** (2019), 1163–1178.
- [DKL⁺22] Egor Davydenko, Ivan Khokhlov, Vladimir Litvinenko, Ilya Ryakin, Ilya Osokin, and Azer Babaev, *Starkit: Robocup humanoid kidsize 2021 worldwide champion team paper*, RoboCup 2021: Robot World Cup XXIV, Springer International Publishing, 2022.

References

[dSdAMY⁺24] Francisco Bruno Dias Ribeiro da Silva, Marcos Ricardo Omena de Albuquerque Máximo, Takashi Yoneyama, Davi Herculano Vasconcelos Barroso, and Rodrigo Tanaka Aki, *Calibration* of inverse perspective mapping for a humanoid robot, RoboCup 2023: Robot World Cup XXVI, Springer Nature Switzerland, 2024.

- [Gül19] Jasper Güldenstein, Comparison of measurement systems for kinematic calibration of a humanoid robot, 2019, Bachelorthesis Universität Hamburg.
- [HKK⁺23] Yasuo Hayashibara, Masato Kubotera, Hayato Kambe, Gaku Kuwano, Dan Sato, Hiroki Noguchi, Riku Yokoo, Satoshi Inoue, Yuta Mibuchi, and Kiyoshi Irie, Robocup2022 kidsize league winner cit brains: Open platform hardware sustaina-op and software, RoboCup 2022: Robot World Cup XXV, Springer International Publishing, 2023.

				References

[JRB18] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock, *Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors*, Robotics: Science and Systems, 2018.

[KHL18] Peter Karkus, David Hsu, and Wee Sun Lee, *Particle filter networks* with application to visual localization, Conference on robot learning, 2018, pp. 169–178.

[LZW⁺19] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and Shiyu Song, L3-net: Towards learning based lidar localization for autonomous driving, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6389–6398.

[VGBZ21] Florian Vahl, Jan Gutsche, Marc Bestmann, and Jianwei Zhang, Yoeo-you only encode once: A cnn for embedded object detection and semantic segmentation, IEEE International Conference on Robotics and Biomimetics (ROBIO), 12 2021.

				References

[ZTD⁺23]

Yuxin Zhang, Fan Tang, Weiming Dong, Haibin Huang, Chongyang Ma, Tong-Yee Lee, and Changsheng Xu, *A unified arbitrary style transfer framework via adaptive contrastive learning*, ACM Transactions on Graphics (2023).