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ChatBridge: Zhao et al. (2023)
Model Architecture

▶ ImageEncoder/VideoEncoder: ViT-G
▶ Sample four frames from each video, concatenate frame features as the video features.

▶ AudioEncoder: BEATs - Chen et al. (2022)
▶ Divide into 10-second clips, concatenate the clip features as the audio features.

▶ Large Language Model: Vicuna-13B
▶ Perceiver: transformer-decoders (only train the perceivers and their learnable query tokens).
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X-LLM Chen et al. (2023)

▶ Model Architecture
▶ X Encoders

▶ The image and video encoders share a pre-trained ViT-G (T frames)
▶ The speech encoder consists of convolution layers and a conformer structure Gulati et al.

(2020)
▶ X2L interface

▶ The Image and Video Q-former: initialized from BLIP2’s second stage of Q-Former
▶ C-former: CIF module Dong and Xu (2020) and a 12-layer transformer structure

(frame-level to token-level)
▶ I/V/A-Adapter: linear layers
▶ LLM: ChatGLM-6B
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MACAW-LLM Lyu et al. (2023)

▶ Model Architecture
▶ Modality Encoder

▶ Visual Modality Encoder: CLIP (CLIP-VIT-B/16)
▶ Audio Modality Encoder: WHISPER (WHISPER-BASE)

▶ Large Language Model: LLaMA-7B
▶ Alignment Model

▶ h1 = Linear(Conv1D(h)), ha = Attn(h1, E, E) (1)
▶ LLM: LLAMA-7B



LMM Robotic Stuff Summary

ImageBind Girdhar et al. (2023)

▶ Motivation
▶ The absence of large quantities of multimodal data where all modalities are present together.
▶ Utilize binding property of images and show that just aligning each modality’s embedding to image

embeddings leads to an emergent alignment across all of the modalities.
▶ Emergent Zero-shot Alignment

▶ ImageBind aligns (I,M) by using contrastive learning, aligning every other modality to image I.
▶ By training (I,M1) and (I,M2), (M1,M2) will be aligned together.
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Video-LLaMA Zhang et al. (2023)

▶ Model Architecture
▶ Vision-Language Branch

▶ Frozen image-encoder (ViT-G/14) embeds each video frame (N frame)
▶ Audio-Language Branch

▶ Scarcity of audio-text data; train the audio-language branch using visual-text data.
▶ Pre-trained ’audio’ encoder (ImageBind - Image Branch), bridge the ImageBind with the

LLM.
▶ Q-former (same architecture as Q-Former in BLIP-2)
▶ Linear layer to adapt the representations to the input of LLMs.
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PandaGPT Su et al. (2023)

▶ Motivation
▶ leverages the power of multimodal encoders from ImageBind to bind all the modalities to image
▶ then align the ImageBind to the LLM by image-text instruction dataset

▶ Model Architecture
▶ Imagebind encoders for all modalities
▶ LLM: Vicuna-7b/13b
▶ a linear projection layer f to connect the representation produced by ImageBind to Vicuna
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NExT-GPT Wu et al. (2023)

▶ Motivation
▶ Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey

to the limitation of only input-side multimodal understanding, without the ability to produce
content in multiple modalities.

▶ Model Architecture
▶ Multimodal Encoding Stage: ImageBind + Linear projection layer
▶ LLM: Vicuna-7b
▶ Multimodal Decoding Stage: Transformer-based projection layer + Diffusion Models (stable

diffusion, zeroscope, AudioLDM)
▶ To solve the OOD problem, during multimodal alignment training, they use image, video,

audio-text pairs.
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Multi-Modal LLM Training

▶ One stage training (Instruction-Tuning)
▶ Macaw-LLM: image, audio, video - language instruction-response data
▶ PandaGPT: image-language instruction-response data

▶ Two stages training (Multimodal-Alignment + Instruction-Tuning)
▶ ChatBridge

1. image, audio, video - language paired data;
2. multimodal - language instruction-response data

▶ X-LLM
1. image, speech, video - language paired data
2. multimodal - language instruction-response data;

▶ Video-LLaMA
1. image, video - language paired data
2. image, video - language instruction-response data;

▶ NExT-GPT (Understanding Branch)
1. image, audio, video - language paired data
2. multimodal - language instruction-response data
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Categorization

▶ Benchmark adaptation
▶ PandaGPT: 160k image-language instruction-following data

(MiniGPT-4, LLaVA)
▶ Video-LLaMA: 1. Webvid-2M + CC595K; 2. MiniGPT-4 +

LLaVa + Video-Chat
▶ Expert Tools

▶ ChatGPT-aided
▶ X-LLM
▶ Macaw-LLM

▶ ChatGPT + Other Specific Tools
▶ ChatBridge
▶ NExT-GPT
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Macaw-LLM Data Construction

▶ Utilize GPT-3.5-TURBO, generate 10 instruction-response pairs within a single query
▶ Text Instruction Dataset: Alpaca instruction dataset (52,000 instruction-response examples)
▶ Image Instruction Dataset: curate around 69K instruction-response pairs by generating them from

COCO image captions
▶ Video+Audio Instruction Dataset: generate approximately 50K video instruction-response

examples by utilizing the video captions from the Charades and AVSD
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ChatBridge Data Construction

▶ Multi-Modal Alignment Dataset
▶ image-text: MS-COCO, SBU Captions, Conceptual Captions, LAION-115M
▶ video-text: Webvid10M
▶ audio-text: WavCaps

▶ Uni-Modal Instruction Dataset
▶ Task-Specific Data: VQA2, VG-QA, COCO Caption; MSRVTTQA, MSRVTT Caption; AudioCaps
▶ For each task, ChatGPT derive 10-15 unique instruction templates
▶ Specify desired response style (short, brief, single sentence)
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Categorization

▶ Some of the Multi-Modal LLMs don’t have a comprehensive evaluation, only
case studies are provided.

▶ Case Study
▶ Video-LLaMA▶ Macaw-GPT▶ PandaGPT

▶ Close-End Evaluation
▶ ChatBridge: unimodal + multimodal zero-shot task-specific

evaluation▶ X-LLM: ASR ablation study (non zero-shot task-specific evaluation)
▶ NExT-GPT: unimodal non zero-shot task-specific evaluation

▶ Open-End Evaluation
▶ ChatBridge: umimodal + multimodal GPT scoring
▶ X-LLM: image-text GPT scoring (same as LLaVA)
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Evaluation Results of ChatBridge

▶ Uni-Modal Results
▶ On image-text, video-text datasets, it achieves comparable performance

▶ Multi-Modal Results
▶ Ablation study for using Multi-Modal dataset, better performance across all three tasks

▶ Incorporating both video and audio for solving these tasks.
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Evaluation Results of X-LLM and NExT-GPT

▶ Results of X-LLM
▶ Uni-modal evaluation on image-text: comparable results with LLaVA, use of the BLIP2 pretrained

Q-Former parameters significantly improves the model’s performance.
▶ Results of NExT-GPT

▶ Can mostly achieve much better performance on the X-to-text generation than the CoDi baseline,
owing to the direct generation of texts from LLM, which is inherently expertized by the LLM.
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Why is it so small

▶ the main topic today is LMM sorry for the mis-propaganda
▶ this area is of high potential yet remains lacking of

explorations
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VIMA

▶ Multimodal prompting formulation that converts diverse robot
manipulation tasks into a uniform sequence modeling problem.

▶ T-5 for words, Masked RCNN for visual
▶
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VPT

▶ Use vast data collected from Internet as the demonstration for
the construction of the IDM

▶ Utilizes the principle of weak supervision to train the ultimate
model

▶
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VILA

▶ Utilized the COT and GPT4V, add te closed-loop structure
▶ Mostly focuses on the reasoning performance in complicated

scenario and tasks
▶ However most of the improvement are based on GPT-4V



LMM Robotic Stuff Summary

Pre-experiments based on GPT-4V

▶ Can separate into several frames and explain accordingly
▶ Can detect the main object
▶ Can provide a vague description of the posture
▶ Have hallucinations, like saying there are two person when the fact being One
▶ Have off course results, like providing the method rather than the results
▶ but all of the cons can be solved by training our own model
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Main Trend

▶ The entire Robotic-LLM work tends to combine with LMM
▶ LMM performs well in the planning task, yet others still

remains to explore
▶ GPT-4V show a potential in recognizing the robot scenarios
▶ Weak supervision is widely accepted in LMM data

constructions
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Ongoing Proj. 1.

▶ Using simulated sceneries to train the models capabilities of
providing valuable feedback

▶ Motivated by the self-supervised type of work in robotics and
LMM’s capabilities

▶ Serve as a further exploration based on the idea of EUREKA
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Possible Proj. 2.

▶ Based on real robotics
▶ Whether the LMM can decide the actual performance in real

scenario fits the Human’s Desire.
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