

Experiment

Related Works

ヘロト ヘロト ヘヨト ヘヨト

э

1/27

Conclusion 0

SAM a great Semantic Segmentations LLM to generate the reward function

Hantao Zhou

Universitaet Hamburg

January 21, 2024

Experiment

Related Works

Conclusion O

Table of Contents

Introduction Background Motivation

Methodology

Segment Anything Task Model Architecture

Experiment

Training and Data Engine Zero-Shot Transfer Demo

Related Works

Conclusion

Related Works

Conclusion O

Introduction Background Motivation

Methodology

Segment Anything Task Model Architecture

Experiment Training and Data Engine Zero-Shot Transfer Demo

Related Works

Conclusion

Related Works

Conclusion O

Multi-modal processing structure

 \mathbb{C} I \mathbb{C} on the second state of the second state of the second state \mathbb{C}

Figure: Multi-modal processing structure

Related Works

Conclusion O

Prompt-based Techniques

- 1. Instruct Tunning
- 2. Prompting

Related Works

Conclusion O

Motivation

- $1.\ to \ build \ a \ good \ big-modal \ based \ image \ model$
- 2. to harness the capability of zero-shot

Related Works

Conclusion O

Scientific Questions

- 1. What task will enable zero-shot generalization?
- 2. What is the corresponding model architecture?
- 3. What data can power this task and model?

Related Works

Conclusion O

Introduction

Background Motivation

Methodology

Segment Anything Task Model Architecture

Experiment

Training and Data Engine Zero-Shot Transfer Demo

Related Works

Conclusion

Related Works

General Methods

(c) Data: data engine (top) & dataset (bottom)

- 1. Promptable Segmentations
- 2. Encoder-Decoder Architecture
- 3. Data Engine with Dataset

Experiment

Related Works

Conclusion O

Task

- 1. Translating the idea of Prompting to the task of semantic segmentation
- 2. Generate mask for any prompt

Experiment

Related Works

Conclusion O

Pretrain

- 1. Provide with positive and negative clicks
- 2. Present the answer of correct mask
- 3. Unlike the classic interactive semantic segmentation, the annotator can provide the mask for any prompt

Related Works

Model Architecture

- 1. Image Encoder
- 2. Prompt Encoder
- 3. Mask Decoder
- 4. Resolving Ambiguity

Image Encoder

1. MAE 2. ViT

Vision Transformer (ViT)

Related Works

Experiment

Conclusion

イロト イヨト イヨト イヨト э 12 / 27

Related Works

prompt Encoder / Decoder

- 1. Prompt of Dense and Sparse
- 2. masks / points, boxes, text
- 3. Mask encoder map the image embedding, mask and prompts to the result mask

Experiment

Related Works

Conclusion O

Resolving Ambiguity

- $1. \ \mbox{Three mask}$ is usually sufficient for representing
- 2. add estimated IoU

Related Works

Conclusion O

Introduction

Background Motivation

Methodology

Segment Anything Task Model Architecture

Experiment

Training and Data Engine Zero-Shot Transfer Demo

Related Works

Conclusion

Experiment

Related Works

Conclusion O

Training

1. Assisted-manual stage

- $1.1\,$ like classic interactive semantic segmentation
- $1.2\,$ have mechanism for solving granularity problem
- $1.3\,$ annotations are based on the models' output
- 2. Semi-automatic stage
 - 2.1 Aims to increase the diversity of masks in order timprove the model's generalization ability
 - 2.2 Ask the annotators to provide different masks
- 3. Fully-automatic stage

Experiment 0 000 Related Works

Conclusion 0

Edge Detection

Related Works

Conclusion O

Instance Segmentation

<ロト < 回 > < 目 > < 目 > < 目 > 目 の Q @ 17/27

Text-to-Mask

Related Works

Conclusion O

Related Works

LLAVA-PLUS

Related Works

Conclusion 0

Language Segment-Anything

Experiment

Related Works

Transfer

Method	Seen	Unseen	New background	More distractors	Average
Ours	82.5	80.0	65.0	75.0	75.625
-replace mask with bbox	50.0	40.0	25.0	30.0	36.25
-w/o tracking	70.0	50.0	55.0	70.0	61.25
-single view	65.0	80.0	20.0	70.0	58.75
-RGB-M only	85.0	70.0	50.0	70.0	68.75

Related Works

Grasp Anything

Fig. 2. Dataset creation pipeline.

Experiment

Related Works

Conclusion O

FLICAR

Experiment

Related Works

Instruct2Act

Related Works

Agriculture Robots

Fig. 1: Overview of the robot platform architecture showing its components and relations

Experiment

Related Works

Conclusion 0

OVIR-3D

Figure 2: Pipeline of the proposed method.

Experiment

Related Works

Takeaways

- 1. A good semantic segmentation model
- 2. Encoporating human interaction like Prompting can give more possibliities
- 3. An existing experiment pattern can achieve great result when combined with new emerging techniques