Introduction	Learning visual predictive models	Visual Imagination	Evaluation	Applications For The Project	End o
				<u> </u>	

Learning Visual Predictive Models of Physics

Tom Sanitz

25. February 2024

Table of Contents

- O Motivation
- 2 Learning visual predictive models
- Evaluation
- O Application in our project

Introduction ○●○○	Learning visual predictive models	Visual Imagination	Evaluation 0000000000	Applications For The Project	En O
NA					

Motivation

Introduction ○○●○	Learning visual predictive models	Visual Imagination	Evaluation 0000000000	Applications For The Project ○	End ○
Motivatio	<u>on</u>				

- Humans can predict the motion of objects
- We do not solve equations of motion
- Imagination of trajectory
- Like running an internal 'simulation'

How to acquire this imagination?

Visual Imagination

- Knowledge of both agent and world required
- Modeling the external world very complex
- Learning imagined trajectory from visual input alone?

Introduction

Evaluation

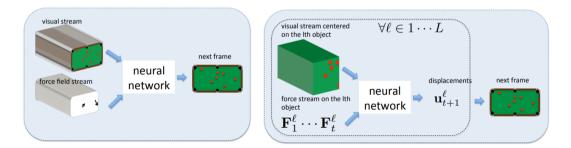
Learning Visual Predictive Models

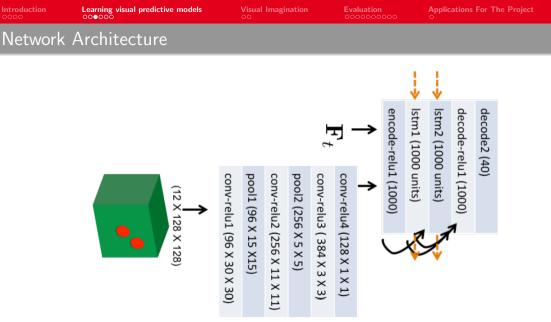
• 'Learning visual predictive models of physics for playing billiards' by Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, Jitendra Malik [1]

Object-Centric Prediction

Object-Centric Benefits

- Naturally includes translation invariance
- Easily share model across different 'worlds'





Network Architecture

Input at each time step

- O Current + previous 3 glimpses (images)
- **2** Applied forces $F_t = (F_t^x, F_t^y)$
- **(**) Hidden states of LSTM units t 1

Network output

- Ball displacement $u_{t+k} = (\lambda x_{t+k}, \lambda y_{t+k})$ for $k = 1 \dots h$ in next h frames
- Predict next 20 steps, therefor $20 \times 2 = 40$ output values

Visual Imagination

Evaluation

Model Training: World Setup

Random configurations:

- Rectangular and non-rectangular walls
- Wall length[300 pixel, 550 pixel]
- Starting point
- Forces on the ball (first frame only)
- Sequence length([20,200]

- Weighted Euclidean Loss
- Errors in shorter time horizon get higher loss

Loss Function

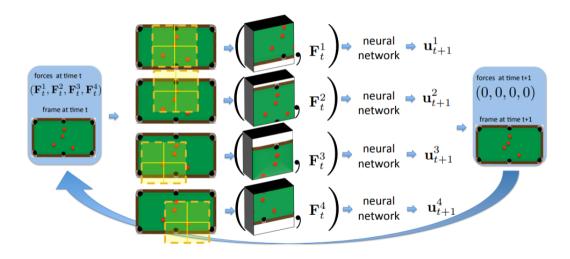
$$L = \sum_{k=1}^{h} w_k ||\widetilde{u}_{t+k} - u_{t+k}||_2^2$$

Visual Imagination

Generate Visual Imaginations

- Predicted trajectory leads to generate visual imaginations?
- Translate each ball by predicted velocity (\widetilde{u}_t) at time t
- Repeat iteratively for all future world states

Evaluation: Imagination



Model Evaluation

Error in angle and magnitude

- Constant velocity (CV)
- Object centric (OC)
- Compared to frame centric (FC)

Model Evaluation

Evaluation Rectangular World

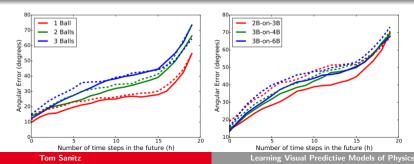
- Near Collision := within [-4,4] frames depicting collision
- Mean angular error in degrees
- Relative error in magnitude of predicted velocity

Time	Overall Error		Error Near Collisions			
	CV	FC	OC	CV	FC	OC
t+1	3.0°/0.00	$6.2^{o}/0.04$	$5.1^{o}/0.03$	23.2°/0.00	11.4°/0.06	9.8°/0.04
t+5	11.8°/0.01	8.7°/0.05	$7.2^{o}/0.04$	56.6°/0.05	21.1°/0.12	17.9°/0.10
t+20	45.3°/0.01	16.3°/0.09	$14.8^{o}/0.09$	123.0°/0.04	54.8°/0.20	54.8°/0.20

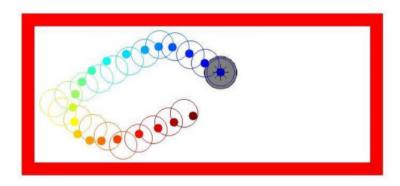
Evaluation: Object Centric vs Frame Centric

Comparison Details

- Near collision angular error
- Dashed := FC, solid := OC
- 20 steps (h=20)
- 2B-on-3B := trained on 2 ball world, eval on 3 ball world

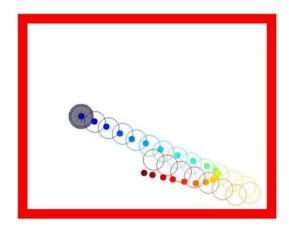


Qualitative Evaluation



Introduction	Learning visual predictive models	Visual Imagination	Evaluation	Applications For The Project ○	l (

Qualitative Evaluation



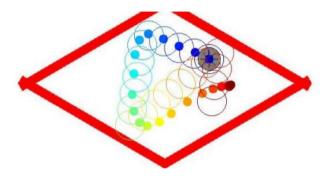
Visual Imagination

Evaluation

Applications For The Project

End ○

Qualitative Evaluation



Introduction

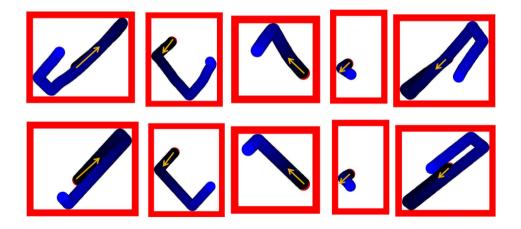
Visual Imagination

Evaluation

Applications For The Project

End ○

Evaluation: Visual Imagination



Action Planning Using Visual Predictions

- Plan actions for which the agent was never trained
- Planning force required to push ball to desired location
- Achieved using:

Introduction

- **()** Run multiple visual imaginations (simulations)
- Optimal force = Closest ball to target location

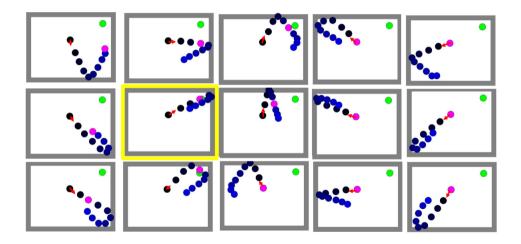
Introduction

Visual Imagination

Evaluation

Applications For The Project

Action Planning Using Visual Predictions



Results: Action Planning Using Visual Predictions

- OC-Model outperforms FC-Model
- Oracle is the physics simulator
- Hit accuracy in amount of tries, where ball in required distance to target
- Arena size: 300-550 pixel

Method	Hit Accuracy			
	< 10 pixels	< 25 pixels	< 50 pixels	
Oracle	95%	100%	100%	
Random	3%	14%	23%	
Ours (FC-Model)	15%	39%	60%	
Ours (OC-Model)	30%	56%	85%	

Similarities And Challenges For The Project

- Top down view and 2D trajectories very similar to our golf ball
- Initially planned to use a similar approach, but long term errors are accumulating
- Most likely improvement using Transformers?
- Overall probably inferior to learning a residual like in Tossingbot [2]
- However could be considered for local patches, e.g. infront of obstacles

Introduction Learning visual predictive models Visual Imagination Evaluation Applications For The Project End

Thank you for your attention!

References

- Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. "Learning visual predictive models of physics for playing billiards". In: arXiv preprint arXiv:1511.07404 (2015).
- [2] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. "Tossingbot: Learning to throw arbitrary objects with residual physics". In: <u>IEEE Transactions on Robotics</u> (2020).

Backup: LSTM

