

Learning to Play Minigolf

(Mohammad Khansari, Klas Kronander and Aude Billard)

Lukas Sommerhalder 18.01.2024

Agenda

- 1 Introduction
- 2 Stable Estimator of Dynamical Systems (SEDS)
- 3 Hitting Motion
- 4 Hitting Parameters
- 5 Minigolf Workflow
- 6 Conclusion
- 7 Integration into the Minigolf Project
- 8 Discussion

Introduction

Picture: Khansari et al.

Objectives

- **•** Introduction to:
	- **Gaussian Mixture Models (GMM)**
	- Gaussian Mixture Regression (GMR)
- **Example 10 Lyapunov Stability**
- Stable Estimator of Dynamical Systems (SEDS)
- Usage of these concepts for a Minigolf-Robot

Capabilities of the whole model

- \blacksquare Hit the ball and put it in
- Reproduction of demonstrated hitting motions
- Estimate a successfull speed and direction
- Rotation and scaling of the hitting motion
- Robust against perturbations
	- Initial golf club position
	- **E** linitial ball position
	- Deviations during the execution of the shot

Video: Teaching robot how to swing a golf club

Learning to Sink a Ball in Minigolf: A Dynamical Systems-based Approach

Part 1

Submitted to

The Journal of "Advanced Robotics", Special Issue on IROS 2011

S.M. Khansari-Zadeh, Klas Kronander, and Aude Billard **LASA Laboratory - EPFL** CH-1015 Lausanne http://lasa.epfl.ch/

www.youtube.com/watch?v=hHq7QmuxTIw

Introduction SEDS

■ Dynamical System (DS)

Multidimensional Kinematic Variable: $\dot{\xi} = f(\xi)$ e.g. End-effector position/orientation, joint angles

- Challenge
	- Finding a model of a globally asymptotically stable DS
	- With few demonstrations

IІН Iniversität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Demonstration Data

Each point describes its coordinates and velocities.

Multivariate Gaussian Distribution I

Examples of Multivariate Gaussians K-Means Initialization (left), SEDS (right)

Multivariate Gaussian Distribution II

Probability Density Function (PDF):

$$
\mathcal{N}(\xi^{t,n}, \dot{\xi}^{t,n}; \theta^k) = \n\frac{1}{\sqrt{(2\pi)^{2d} |\Sigma_{\xi}^k|}} e^{-\frac{1}{2}([\xi^{t,n}, \dot{\xi}^{t,n}] - \mu^k)^T (\Sigma^k)^{-1} ([\xi^{t,n}, \dot{\xi}^{t,n}] - \mu^k)} \n\begin{cases} \n\forall n \in 1..N \\ \nt \in 0..T^n \n\end{cases}
$$

2d components (d coordinates + d time derivatives)

Parameters:

$$
\theta^k = \{\pi^k, \mu^k, \Sigma^k\} \quad, \quad \mu^k = \left(\begin{array}{c} \mu^k_{\xi}\\ \mu^k_{\xi} \end{array}\right) \quad, \quad \Sigma^k = \left(\begin{array}{cc} \Sigma_{\xi}^k & \Sigma_{\xi \dot{\xi}}^k\\ \Sigma_{\dot{\xi} \xi}^k & \Sigma_{\dot{\xi}}^k \end{array}\right)
$$

Weight parameter for the GMM (not used at this point)

Gaussian Mixture Model

Weight of cluster k:

 $\mathcal{P}(k)=\pi^k$

Conditional PDF (k-th Cluster PDF):

$$
\mathcal{P}(\xi^{t,n},\dot{\xi}^{t,n}|k)=\mathcal{N}(\xi^{t,n},\dot{\xi}^{t,n};\mu^{k},\Sigma^{k})
$$

Probability Density Function of the GMM:

$$
\mathcal{P}(\xi^{t,n},\dot{\xi}^{t,n};\theta) = \sum_{k=1}^K \mathcal{P}(k)\mathcal{P}(\xi^{t,n},\dot{\xi}^{t,n}|k) \quad \left\{ \begin{array}{l} \forall n \in 1 \ldots N \\ t \in 0 \ldots T^n \end{array} \right.
$$

Gaussian Mixture Regression I

Gaussian Mixture Regression (GMR):

$$
\dot{\xi}=\sum_{k=1}^K\frac{\mathcal{P}(k)\mathcal{P}(\xi|k)}{\sum_{i=1}^K\mathcal{P}(i)\mathcal{P}(\xi|i)}\big(\mu_{\dot{\xi}}^k+\Sigma_{\dot{\xi}\dot{\xi}}^k\big(\Sigma_{\xi}^k\big)^{-1}\big(\xi-\mu_{\xi}^k\big)\big)
$$

Simplification through substitution:

$$
\dot{\xi} = \hat{f}(\xi) = \sum_{k=1}^{K} h^k(\xi) (A^k \xi + b^k) \begin{cases} A^* = \sum_{\dot{\xi}\xi} (\sum_{\xi}) \\ b^k = \mu_{\dot{\xi}}^k - A^k \mu_{\xi}^k \\ h^k(\xi) = \frac{\mathcal{P}(k)\mathcal{P}(\xi|k)}{\sum_{i=1}^{K} \mathcal{P}(i)\mathcal{P}(\xi|i)} \end{cases}
$$
non-linear

 \mathbf{A}^k ∇^k (∇^k) -1

Jniversität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Gaussian Mixture Regression II

Finding Parameters for the GMM

- The usual algorithm (Expectation-Maximization) should not be used because:
	- Doesn't ensure globally asymptotically stability.
	- **•** Minimizing the log likelihood might not be optimal.
- Solution
	- Adding constraints to ensure stability.
	- Allow various goals for optimization:
		- Mean Square Error
		- **E** Log-Likelihood
		- **Direction Deviation**

Lyapunov Stability Theorem

Lyapunov Function: $V(\xi) : \mathbb{R}^d \to \mathbb{R}$ $V(\xi) > 0 \qquad \qquad \forall \xi \in \mathbb{R}^d, \qquad \xi \neq \xi^*$ $\dot{V}(\xi)<0 \qquad \qquad \forall \xi\in\mathbb{R}^d, \qquad \xi\neq \xi^*$ $V(\xi^*) = 0,$ $\dot{V}(\xi^*) = 0.$

Lyapunov Function

$$
V(\xi)=\frac{1}{2}(\xi-\xi^*)^T(\xi-\xi^*)
$$

$$
\dot{V}(\xi) = \frac{dV}{dt} = \frac{dV}{d\xi} \frac{d\xi}{dt}
$$
\n
$$
= \frac{1}{2} \frac{d}{d\xi} \left((\xi - \xi^*)^T (\xi - \xi^*) \right) \dot{\xi}
$$
\n
$$
= (\xi - \xi^*)^T \dot{\xi}
$$

U_H Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

 \blacktriangleright is a Lyapunov Function with:

$$
\dot{\xi} = \hat{f}(\xi) = \sum_{k=1}^{K} h^k(\xi) (A^k \xi + b^k)
$$

and constraints:

$$
b^{k} = -A^{k} \xi^{*}
$$

\n
$$
A^{k} + (A^{k})^{T} \le 0
$$

Optimization Goals

Example Trajectory Reproduction

DER FORSCHUNG | DER LEHRE | DER BILDUNG

IUH

Example Velocity Reproduction

IІН

Robot Control Loop

Picture: Khansari et al.

Video: Introduction to SEDS

A brief overview of

SEDS Framework

Seyed Mohammad Khansari-Zadeh **Aude Billard**

January 2013

https://www.youtube.com/watch?v=qc5_as8qxBI

3

Hitting Motion

Getting a Target Field from SEDS I

Getting a Target Field from SEDS II

■ Getting a normalized field of motion to reach the target with a non-zero velocity:

$$
h(x; \theta) = \frac{f(x; \theta)}{\|\hat{f}(x; \theta)\|} \qquad \forall x \in \mathbb{R}^3 \setminus x^*
$$

Target Position

$$
h(x; \theta) = \lim_{x \to x^*} h(x; \theta)
$$

The vector field $h(x; \theta)$ **conserves the convergence of the SEDS** flow but induces a flow of constant speed.

Modified SEDS

■ Modification of the SEDS for trajectories with non-zero velocities at the target point:

Strength Factor Target Field/ velocity vector with constant speed

Modified SEDS Optimization Problem

$$
\min_{\theta} J(\theta) = -\sum_{n=1}^{N} \sum_{t=0}^{T^n} \omega^{t,n} \frac{\left(\dot{x}^{t,n}\right)^T \dot{x}^{t,n}(\theta)}{\|\dot{x}^{t,n}\| \|\dot{x}^{t,n}(\theta)\|} \qquad \begin{cases} \mu_{\dot{x}}^k + \sum_{\dot{x}\dot{x}}^k (\sum_{x}^k)^{-1} (x^* - \mu_{\dot{x}}^k) = 0 \\ \sum_{\dot{x}\dot{x}}^k (\sum_{x}^k)^{-1} + (\sum_{\dot{x}\dot{x}}^k)^{-1} (\sum_{\dot{x}\dot{x}}^k)^T \prec 0 \\ -\sum_{\dot{x}}^k \prec 0 \\ 0 < \pi^k \le 1 \end{cases} \qquad \forall k \in 1..K
$$
\n
$$
\theta^k = \{\pi^k, \mu^k, \Sigma^k\} \text{ and } \theta = \{\theta^1 \dots \theta^K\}
$$

The optimization problem minimizes the angle between the demonstrations $(\dot{x}^{t,n})$ and estimations $(\dot{x}^{t,n}(\theta) = \hat{f}(x^{t,n};\theta))$ as before but with weights $(\omega^{t,n})$:

- weight of the first data point

- weight of the last data point

The direction at the target point matters the most in Minigolf.

Target Field

The learned GMR parameters can now be used to estimate the target direction at varying positions:

$$
\hat{f}(x; \theta) = \sum_{k=1}^{K} h^k(x; \theta) (\mu_{\hat{x}}^k + \Sigma_{\hat{x}\hat{x}}^k (\Sigma_{\hat{x}}^k)^{-1} (x - \mu_{\hat{x}}^k)) \text{ with } h^k(x; \theta) = \frac{\pi^k \mathcal{N}(x; \theta^k)}{\sum_{i=1}^{K} \pi^i \mathcal{N}(x; \theta^i)}
$$
\n
$$
h(x; \theta) = \frac{\hat{f}(x; \theta)}{\|\hat{f}(x; \theta)\|} \text{ } \forall x \in \mathbb{R}^3 \setminus x^*
$$
\nNormalized streamlines

Strength Factor

The strength factor $v(x): \mathbb{R}^d \to \mathbb{R}$ is a positive scalar and defines the intensity / velocity of a motion which the robot should follow.

An estimate of the strength factor can be learned from demonstrations through various regression techniques like GMR with regard to $v(x) > 0$.

E.g. GMR:
$$
v(x) = \sum_{k=1}^{K_{SF}} h_{SF}^k(x) \left(\mu_{SF,v}^k + \Sigma_{SF,vx}^k (\Sigma_{SF,x}^k)^{-1} (x - \mu_{SF,x}^k) \right)
$$

Control of Hitting Direction

- Default hitting speed and direction are given through the demonstrations.
- To change the hitting direction and hitting speed, proceed as follows:

$$
\dot{\boldsymbol{x}} = \kappa \, \boldsymbol{R}_\alpha \, \boldsymbol{f}_h(R_\alpha^T \boldsymbol{x}; \boldsymbol{\theta}) \equiv \kappa \, \boldsymbol{R}_\alpha \, v(R_\alpha^T \boldsymbol{x}) \, \boldsymbol{h}(R_\alpha^T \boldsymbol{x}; \boldsymbol{\theta})
$$

3. Define the hitting speed with gain κ .

1. Transform the input to the desired reference frame.

2. Transform the result back to the desired hitting direction

Hitting 4
Parameters

UH Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Hitting Parameters

- The goal is to find good hitting parameters for varying situations.
- **Hitting parameters:**
	- Hitting speed
	- **Hitting direction**
- Situation:
	- Ball position
	- Goal position

Training Data

Hitting Parameters Prediction with GMR

- 1. The parameters can be optimized to maximize the likelihood of the training set (e.g. Expectation-Maximization Algorithm).
- 2. Finding hitting parameters for unseen inputs with GMR:

$$
\hat{\boldsymbol{g}}(\boldsymbol{s}^*) = \sum_{k=1}^{K_{HP}} h_{HP}^k(\boldsymbol{s}) \left(\mu_{HP,\alpha\kappa}^k + \ \Sigma_{HP,\alpha\kappa\boldsymbol{s}}^k (\Sigma_{HP,\boldsymbol{s}}^k)^{-1} (\boldsymbol{s} - \mu_{HP,\boldsymbol{s}}^k) \right)
$$
\nPrediction of successful
\nhitting parameters
\n(as on previous slides)

Comparison of GMR and Gaussian Process Regression

Adopted from Khansari et al.

Minigolf 5
Minigolf
Workflow

Photo: Khansari et al.

Stages

(f) Idle

Training

IІН

Execution

Workflow

Video: Robot playing mini golf on challenging fields

Learning to Sink a Ball in Minigolf: A Dynamical Systems-based Approach

Part 2

Submitted to

The Journal of "Advanced Robotics". Special Issue on IROS 2011

S.M. Khansari-Zadeh, Klas Kronander, and Aude Billard **LASA Laboratory - EPFL** CH-1015 Lausanne http://lasa.epfl.ch/

<https://www.youtube.com/watch?v=agGZ8itP830>

6

Conclusion

Conclusion

■ The task to learn Mini Golf can be separated into two subtasks:

- 1. To learn how to hit the ball.
- 2. To learn successful hitting angles and hitting speeds.
- The modified SEDS is a powerful tool for the first task:
	- Changes to the start position are easy to implement.
	- **The effects of disturbances when swinging the club are** dampened.

Integration into the Minigolf Project

7

Picture: www.mybotshop.de

Current State

 1.0

Todo

- Building a workflow to achieve the suggested velocities from the SEDS on the robot.
	- **Inverse Kinematics**
	- Collision Detection
- Optional (might be necessary to achieve high velocities):
	- Building a model to estimate good start positions
	- Building a model to estimate a good acceleration profile

Discussion

References

- **•** S. M. Khansari-Zadeh and A. Billard, Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models, IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943-957, 2011, DOI: [10.1109/TRO.2011.2159412.](http://www.doi.org/10.1109/TRO.2011.2159412)
- S.M. Khansari-Zadeh, K. Kronander & A. Billard, Learning to Play Minigolf: A Dynamical System-Based Approach, Advanced Robotics, vol. 26, no. 17, pp. 1967-1993, 2012, DOI: [10.1080/01691864.2012.728692.](https://doi.org/10.1080/01691864.2012.728692)
- K. Kronander, M. S. M. Khansari-Zadeh and A. Billard, Learning to control planar hitting motions in a minigolf-like task, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, pp. 710-717, 2011, [DOI: 10.1109/IROS.2011.6094402.](http://www.doi.org/10.1109/IROS.2011.6094402)

