

Department of Informatics

MIN Faculty

TossingBot by Zeng et al. [2020](#page-35-0) Learning to Throw Arbitrary Objects With Residual Physics

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

11. Januar 2024

[Motivation](#page-2-0)

Tossing compared to Mini-Golf

Similarities

- 1. Object manipulation
- 2. Single action
- 3. Dynamics estimation
- 4. UR5

Differences

- 1. Different objects different course
- 2. Grasping subtask

[Motivation](#page-2-0)

Projectile Trajectories and Grasping

Motivation	__ つつべけ vacii	Model	Learning	ments	Results	Troject יעב	conclusion.	ľЬг

Residual physics controller

- 1. Analytical model for estimate of control parameter
- 2. Residuals for compensation of unknown dynamics

[Motivation](#page-2-0) [Approach](#page-5-0) [Model](#page-7-0) [Learning](#page-16-0) [Experiments](#page-18-0) [Results](#page-21-0) [Project Takeaways](#page-27-0) [Conclusion](#page-28-0) [Appendix](#page-30-0)

Model overview

[Model](#page-7-0)

[Model](#page-7-0)

 Z

Grasping Primitive

- ▶ Input: $\phi_{g} = (x, \theta)$
- \triangleright 3-D location $x = (x_x, x_y, x_z)$
- \triangleright Orientation θ (around direction of gravity)

Throwing Primitive

- ▶ Endeffector trajectory
- ▶ Input: $\phi_t = (r, v)$
- ▶ Release position $r = (r_x, r_y, r_z)$
- \blacktriangleright Release velocity $v = (v_x, v_y, v_z)$
- ▶ Axis between fingers orthogonal to plane of object trajectory

- ▶ RGB-D heightmap
- ▶ Fixed-mounted overhead camera
- ▶ Project image onto 3-D pointcloud
- ▶ normalized

Perception Network

- ▶ Fully convolutional network ResNet-7
- ▶ convolutional layer \rightarrow max pooling \rightarrow residual block \rightarrow max pooling \rightarrow residual $block \rightarrow$ residual block
- \blacktriangleright residual block: 2 convolutional layers with bypass
- \triangleright Output: spacial feature representation μ

[Motivation](#page-2-0) [Approach](#page-5-0) [Model](#page-7-0) [Learning](#page-16-0) [Experiments](#page-18-0) [Results](#page-21-0) [Project Takeaways](#page-27-0) [Conclusion](#page-28-0) [Appendix](#page-30-0)

Grasping Network

- ▶ Fully convolutional network ResNet-7
- \blacktriangleright Input: μ
- \triangleright Output: probability map Q_{g} of grasp success
- ▶ Different grasping orientations by rotation of input heightmap
- \blacktriangleright 16 orientations
- highest probability pixel \rightarrow position and orientation
- \blacktriangleright sample efficient

- \blacktriangleright Constrain release position r
	- 1. arial trajectory on same plane as on release
	- 2. fixed release distance and height to robot base
- ▶ Constrain release velocity v
	- 1. 45 deg upwards in direction of target p

Standard Equation of Linear Projectile Motion

$$
p = r + \hat{v}t + \frac{1}{2}at^2
$$

[Motivation](#page-2-0) [Approach](#page-5-0) [Model](#page-7-0) [Learning](#page-16-0) [Experiments](#page-18-0) [Results](#page-21-0) [Project Takeaways](#page-27-0) [Conclusion](#page-28-0) [Appendix](#page-30-0)

Assumptions

- ▶ Grasp at CoM
- ▶ Point particle
- ▶ No drag
- \blacktriangleright Release velocity v is tossing velocity (no spin)
- p: landing location
- r: release position
- \hat{v} : release velocity
- a: acceleration $(a_z = -9.8m/s^2)$
- t : time

(1)

- ▶ Compensation for assumptions
- **•** Residual value δ
- \triangleright δ added to \hat{v}

Residual Network

- ▶ Fully convolutional network ResNet-7
- \blacktriangleright Input: μ
- \blacktriangleright Output: Q_t
- \triangleright One-on-one correspondence between Q_{ε} and Q_t

[Motivation](#page-2-0) [Approach](#page-5-0) [Model](#page-7-0) [Learning](#page-16-0) [Experiments](#page-18-0) [Results](#page-21-0) [Project Takeaways](#page-27-0) [Conclusion](#page-28-0) [Appendix](#page-30-0)

 \blacktriangleright Prediction of residual value δ_i

(4)

- y_i : Grasp success ground truth δ_i : Residual ground truth
-

 \blacktriangleright All modules as one network f

▶ End-to-end training

Loss function

$$
\mathcal{L}_g = -\left(y_i \log q_i + (1+y_i) \log(1-q_i)\right) \tag{3}
$$

$$
\blacktriangleright
$$
 Huber loss

[Learning](#page-16-0)

$$
\mathcal{L}_t = \begin{cases} \frac{1}{2}(\delta_i - \overline{\delta}_i)^2, & \text{for } |\delta_i - \overline{\delta}_i| < 1\\ |\delta_i - \overline{\delta}_i| - \frac{1}{2}, & \text{otherwise} \end{cases}
$$

 $\mathcal{L} = \mathcal{L}_{g} + y_i \mathcal{L}_{t}$ (2)

[Motivation](#page-2-0) [Approach](#page-5-0) [Model](#page-7-0) [Learning](#page-16-0) [Experiments](#page-18-0) [Results](#page-21-0) [Project Takeaways](#page-27-0) [Conclusion](#page-28-0) [Appendix](#page-30-0)

- 1. Capture visual input
- 2. Perform forward pass (get ϕ_g and ϕ_t)
- 3. Execute grasping
- 4. Execute throwing
- 5. Get ground truth y_i by success of throw
- 6. Approximate landing position \hat{p}

7. Ground truth residual
$$
\overline{\delta}_i = ||v_{x,y}|| - ||\hat{v}_{x,y}||_{\hat{p}}
$$

[Experiments](#page-18-0)

Motivation	Model Approach	Learning	Experiments		Results	Project Takeaways	Conclusion	Appendix
	Method	Balls	Cubes	Rods	Hammers	Seen	Jnseen	
	Regression	70.9	48.8	37.5	32.8	41.8	28.4	
	Regression-PoP	96.1	73.5	52.8	47.8	56.2	35.0	
	Physics-only	98.6	83.5	77.2	70.4	82.6	50.0	
	Residual-physics	99.6	86.3	86.4	81.2	88.6	66.5	

Throwing performance simulation (Mean %)

Grasping performance simulation (Mean %)

▶ <https://www.youtube.com/watch?v=f5Zn2Up2RjQ&t=04m39s>

Grasping and throwing performance real (Mean %)

Throwing to unseen locations (Mean %)

Residual Physics Residual Physics

(grasps supervised by gripper width) (grasps supervised by throw accuracy) (grasps supervised by throw accuracy)

[Motivation](#page-2-0) [Approach](#page-5-0) [Model](#page-7-0) [Learning](#page-16-0) [Experiments](#page-18-0) [Results](#page-21-0) [Project Takeaways](#page-27-0) [Conclusion](#page-28-0) [Appendix](#page-30-0)

Physics Only

Emerging semantics from interaction with objects

- (a): Bin with objects
- (b): RGB-D view
- (c,e): Heatmap of pixel-wise distances
- (d,f): ResNet-18 pre-trained on ImageNet

[Project Takeaways](#page-27-0)

 \blacktriangleright . . .

- ▶ Structure: Physics based guess and learning of residual
	- 1. Baseline solution
	- 2. Deep learning
- ▶ Motion primitive
- ▶ Training time of 14h
- ▶ Automatic reset

- 1. TossingBot: physics based estimate $+$ learned residual
- 2. Robust grasping from downstream learning signal
- 3. Learning of implicit features by interaction with objects

Thank you for your attention

Thank you for your attention. Are there any questions ?

Residual Learning

- ▶ Degredation during training: saturation of accuracy →degrading accuracy
- ▶ Shortcut connections

Residual learning: building block (He et al. [2015\)](#page-35-2)

Huber Loss

$$
\mathcal{L}_1(\delta, \overline{\delta}) = \begin{cases} \frac{1}{2}(\delta_i - \overline{\delta}_i)^2, & \text{for } |\delta_i - \overline{\delta}_i| < 1 \mid \text{Mean squared error for small errors} \\ |\delta_i - \overline{\delta}_i| - \frac{1}{2}, & \text{otherwise } \mid \text{Mean absolute error for large errors} \end{cases}
$$
(5)

AI [2022](#page-35-3)

- ▶ Less weight on outlies compared to MSE
- ▶ Higher loss for errors below 1
- \blacktriangleright Small loss for small error

Huber loss (green) and mean squared error (blue) ([Huber loss](#page-35-4) [2023\)](#page-35-4)

Training performance in simulation

Grasping success in simulation

[References](#page-35-1)

AI, Practicus (Feb. 11, 2022). Understanding the 3 most common loss functions for Machine Learning Regression. Medium. URL: [https://towardsdatascience.com/understanding-the-3-most-common-loss](https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3)[functions-for-machine-learning-regression-23e0ef3e14d3](https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3) (visited on $01/10/2024$).

- He, Kaiming et al. (Dec. 10, 2015). Deep Residual Learning for Image Recognition. version: 1. arXiv: [1512.03385\[cs\]](https://arxiv.org/abs/1512.03385 [cs]). url: <http://arxiv.org/abs/1512.03385> (visited on $01/10/2024$).
- Huber loss (Nov. 9, 2023). In: Wikipedia. Page Version ID: 1184310836. URL:
- https://en.wikipedia.org/w/index.php?title=Huber_loss&oldid=1184310836 (visited on 01/10/2024).
- Zeng, Andy et al. (Aug. 2020). "TossingBot: Learning to Throw Arbitrary Objects With Residual Physics". In: IEEE Transactions on Robotics 36.4. Conference Name: IEEE Transactions on Robotics, pp. 1307-1319. ISSN: 1941-0468. DOI:
	- [10.1109/TRO.2020.2988642](https://doi.org/10.1109/TRO.2020.2988642). url:

<https://ieeexplore.ieee.org/abstract/document/9104757> (visited on 12/13/2023).

Diagram Icon Sources

[References](#page-35-1)

- ▶ <https://www.flaticon.com/free-icons/camera>
- ▶ <https://www.flaticon.com/free-icons/grab>
- ▶ <https://www.flaticon.com/free-icons/throw>

