

MIN Faculty Department of Informatics

TossingBot by Zeng et al. 2020 Learning to Throw Arbitrary Objects With Residual Physics

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

11. Januar 2024

: 202 :										
	Motivation	Approach	Model	Learning	Experiments	Results	Project Takeaways	Conclusion	Appendix	
	Motivat	ion								
	Annroa	- h								
	Approa	cn								
	Model									
	Learnin	σ								
		D								
	Experim	ients								
	Results									
	Droiget	Takaaway	-							
	Project	Такеаwау	S							
	Conclus	ion								
	Annend	ix								
	Append									

Motivation What is TossingBot?

What is	TossingBot	?						
Motivation	Approach	Model	Learning	Experiments	Results	Project Takeaways	Conclusion	Appendix
			Ļ	2	- al			

Motivation Tossing compared to Mini-Golf

	Motivation	Approach	Model	Learning	Experiments	Results	Project Takeaways	Conclusion	Appendix
--	------------	----------	-------	----------	-------------	---------	-------------------	------------	----------

Similarities

- 1. Object manipulation
- 2. Single action
- 3. Dynamics estimation
- 4. UR5

Differences

- 1. Different objects different course
- 2. Grasping subtask

Motivation Projectile Trajectories and Grasping

Motivation Approach Model Learning Experiments Results Project Takeaways Conclusion Appendix	MARY A STATE MALE AND THE STATE DESCRIPTION OF A DESCRIPT
--	--

Residual physics controller

Approach

- 1. Analytical model for estimate of control parameter
- 2. Residuals for compensation of unknown dynamics

		Model					
H H	RG	B-D Camera	970	A KIG OI	rientations asping angle)	Grasping Module	×16

Model overview

Model

Grasping Primitive

- lnput: $\phi_g = (x, \theta)$
- 3-D location $x = (x_x, x_y, x_z)$
- Orientation θ (around direction of gravity)

Throwing Primitive

- Endeffector trajectory
- Input: $\phi_t = (r, v)$
- Release position $r = (r_x, r_y, r_z)$
- Release velocity $v = (v_x, v_y, v_z)$
- Axis between fingers orthogonal to plane of object trajectory

Model Perception Module

- RGB-D heightmap
- Fixed-mounted overhead camera
- Project image onto 3-D pointcloud
- normalized

Perception Network

- Fully convolutional network ResNet-7
- ► convolutional layer → max pooling → residual block → max pooling → residual block → residual block
- residual block: 2 convolutional layers with bypass
- Output: spacial feature representation μ

Model Grasping Module

Motivation Approach Model Learning Experiments Results Project Takeaways Conclusion Appendix Grasping Network

- ► Fully convolutional network ResNet-7
- \blacktriangleright Input: μ
- Output: probability map Q_g of grasp success
- Different grasping orientations by rotation of input heightmap
- 16 orientations
- \blacktriangleright highest probability pixel \rightarrow position and orientation
- sample efficient

Model Throwing Module

- Constrain release position r
 - 1. arial trajectory on same plane as on release
 - 2. fixed release distance and height to robot base
- Constrain release velocity v
 - 1. 45 deg upwards in direction of target p

Model

Standard Equation of Linear Projectile Motion

Model

$$p = r + \hat{v}t + \frac{1}{2}at^2$$

Assumptions

- Grasp at CoM
- Point particle
- No drag
- Release velocity v is tossing velocity (no spin)

- p: landing location
- r: release position
- $\hat{\mathbf{v}}$: release velocity
- a: acceleration ($a_z = -9.8 m/s^2$)
- t: time

(1)

Model Residual Physics-Based Controller

rtcsidud	i i ilysics Di	useu com	lioner					
Motivation	Approach	Model	Learning	Experiments	Results	Project Takeaways	Conclusion	Appendix
► Cor	npensation	i for assu	Imptions					
Res	idual value	e δ						
► δ ac	dded to \hat{v}							
Residu	al Networ	k						
🕨 Full	y convolut	ional net	twork Res	Net-7				
🕨 Inpi	ut: μ							
Out	put: Q_t							
🕨 One	e-on-one co	orrespon	dence bet	ween Q_g a	nd Q_t			
► Pre	diction of	residual	value δ_i					

15/2

Huber loss

 $\mathcal{L}_g = -\left(y_i \log q_i + (1+y_i) \log(1-q_i)
ight)$

$\mathcal{L} = \mathcal{L}_g + y_i \mathcal{L}_t$

Loss function

Learning

 y_i : Grasp success ground truth $\overline{\delta}_i$: Residual ground truth

► All modules as one network *f*

Binary cross-entropy error

End-to-end training

Model

(2)

(3)

(4)

- 1. Capture visual input
- 2. Perform forward pass (get ϕ_g and ϕ_t)
- 3. Execute grasping
- 4. Execute throwing
- 5. Get ground truth y_i by success of throw
- 6. Approximate landing position \hat{p}

7. Ground truth residual
$$\overline{\delta}_i = ||v_{x,y}|| - ||\hat{v}_{x,y}||_{\hat{p}}$$

Motivation	Approach Model	Learning	Experime	nts R	esults Project ⁻	Fakeaways	Conclusion	Appendi
	Method	Balls	Cubes	Rods	Hammers	Seen	Unseen	
	Regression	70.9	48.8	37.5	32.8	41.8	28.4	
	Regression-PoP	96.1	73.5	52.8	47.8	56.2	35.0	
	Physics-only	98.6	83.5	77.2	70.4	82.6	50.0	
	Residual-physics	99.6	86.3	86.4	81.2	88.6	66.5	

Throwing performance simulation (Mean %)

Balls	Cubes	Rods	Hammers	Seen	Unseen
99.4	99.2	89.0	87.8	95.6	69.4
99.2	98.0	89.8	87.0	96.4	70.6
99.4	99.2	87.6	85.2	96.6	64.0
98.8	99.2	89.2	84.8	96.0	74.6
	Balls 99.4 99.2 99.4 98.8	BallsCubes99.499.299.298.099.499.298.899.2	BallsCubesRods99.499.289.099.298.089.899.499.287.698.899.289.2	BallsCubesRodsHammers99.499.289.087.899.298.089.887.099.499.287.685.298.899.289.284.8	BallsCubesRodsHammersSeen99.499.289.087.895.699.298.089.887.096.499.499.287.685.296.698.899.289.284.896.0

Grasping performance simulation (Mean %)

Motivation Approach Model Learning Experiments Results Project Takeaways Conclusion Appendix	
---	--

https://www.youtube.com/watch?v=f5Zn2Up2RjQ&t=04m39s

Motivation	Approach	Model	Learning E>	periments	Resu	Ilts Project Ta	akeaways	Conclusion	Appendix
			Graspin	g		Throwing			
	Method	l	Seen	Unse	en	Seen	Unse	en	
	Human	-baseline	-	-		-	80.1±	10.8	
	Regress	ion-PoP	83.4	75.	6	54.2	52.	0	
	Physics	-only	85.7	76.	4	61.3	58.	5	
	Residua	l-physics	86.9	73.	2	84.7	82.	3	

Grasping and throwing performance real (Mean %)

Method	Simulation	Real
Regression-PoP	26.5	32.7
Physics-only	79.6	62.2
Residual-physics	87.2	83.9

Throwing to unseen locations (Mean %)

Residual Physics

Residual Physics

Physics Only

(grasps supervised by gripper width) (grasps supervised by throw accuracy) (grasps supervised by throw accuracy)

			Results			
		TossingBot	1 ImageNet	2 TossingBot	2. ImageNet	2
(a)	(b)	(c)	(d)	(e)	(f)	

Emerging semantics from interaction with objects

- (a): Bin with objects
- (b): RGB-D view
- (c,e): Heatmap of pixel-wise distances
- (d,f): ResNet-18 pre-trained on ImageNet

Appendi

- Structure: Physics based guess and learning of residual
 - 1. Baseline solution
 - 2. Deep learning
- Motion primitive
- Training time of 14h
- Automatic reset

							Conclusion
--	--	--	--	--	--	--	------------

- 1. TossingBot: physics based estimate + learned residual
- 2. Robust grasping from downstream learning signal
- 3. Learning of implicit features by interaction with objects

Thank you for your attention

				Conclusion	

Thank you for your attention. Are there any questions ?

Residual Learning

References

- ▶ Degredation during training: saturation of accuracy →degrading accuracy
- Shortcut connections

Residual learning: building block (He et al. 2015)

Huber Loss

$$\mathcal{L}_{1}(\delta,\overline{\delta}) = \begin{cases} \frac{1}{2}(\delta_{i}-\overline{\delta}_{i})^{2}, & \text{for } |\delta_{i}-\overline{\delta}_{i}| < 1 \mid \text{Mean squared error for small errors} \\ |\delta_{i}-\overline{\delta}_{i}| - \frac{1}{2}, & \text{otherwise} \mid \text{Mean absolute error for large errors} \end{cases}$$
(5)

AI 2022

- Less weight on outlies compared to MSE
- ▶ Higher loss for errors below 1
- ► Small loss for small error

Huber loss (green) and mean squared error (blue) (Huber loss 2023)

Training performance in simulation

References

Grasping success in simulation

AI, Practicus (Feb. 11, 2022). Understanding the 3 most common loss functions for Machine Learning Regression. Medium. URL: https://towardsdatascience.com/understanding-the-3-most-common-lossfunctions-for-machine-learning-regression-23e0ef3e14d3 (visited on 01/10/2024).

- He, Kaiming et al. (Dec. 10, 2015). Deep Residual Learning for Image Recognition. version: 1. arXiv: 1512.03385[cs]. URL: http://arxiv.org/abs/1512.03385 (visited on 01/10/2024).
- Huber loss (Nov. 9, 2023). In: Wikipedia. Page Version ID: 1184310836. URL: https://en.wikipedia.org/w/index.php?title=Huber_loss&oldid=1184310836 (visited on 01/10/2024).
- Zeng, Andy et al. (Aug. 2020). "TossingBot: Learning to Throw Arbitrary Objects With Residual Physics". In: *IEEE Transactions on Robotics* 36.4. Conference Name: IEEE Transactions on Robotics, pp. 1307–1319. ISSN: 1941-0468. DOI:
 - 10.1109/TR0.2020.2988642. URL:

https://ieeexplore.ieee.org/abstract/document/9104757 (visited on 12/13/2023).

Diagram Icon Sources

References

- https://www.flaticon.com/free-icons/camera
- https://www.flaticon.com/free-icons/grab
- https://www.flaticon.com/free-icons/throw

