
1

MarimbaBot
Carl von Heyden1, Yunlong Wang2, Christian Salamut3,

Imran Ibrahimli4, Berk Gungor5, Juliane Röscheisen6, Florian Vahl7 and Tom Schmolzi8

Technical Aspects of Multimodal Systems
Universität Hamburg
Hamburg, Germany

{carl.von.heyden1, yunlong.wang2, christian.salamut3}@studium.uni-hamburg.de,
{imran.ibrahimli4, berk.gungor5, juliane.roescheisen6, florian.vahl7, tom.schmolzi8}@uni-hamburg.de

Abstract— Our project focuses on the development of a
robotic system capable of playing musical notes and chords
on a marimba. The system integrates various technologies,
including optical music recognition, audio command processing,
and precise motion control. It employs a custom vision model
to read musical notes from a whiteboard and utilizes voice
recognition to interpret human commands, and finally evaluates
the robot’s performance with audio feedback. The project
encompasses hardware components, including 3D-printed com-
pliant mechanisms and servomotors, to mimic human-like
mallet strikes. This multifaceted project demonstrates the fusion
of robotics, music, computer vision, and audio processing,
showcasing a robot capable of performing a complex musical
instrument with precision. The entire project, including code
and documentation, can be found on GitHub1.

Index Terms—robot, music, vision, speech

I. INTRODUCTION

Humans play various musical instruments. The automated
operation of such traditional instruments by non-human
players has been of interest for over 250 years. As an early
example, the musician from Jaquet-Droz, is a mechanical
android, that utilizes 10 fingers to manipulate a customized
organ [12]. With the advancement of technology, the field
of modern robotics emerged. Music-playing robots could
be used to showcase different technologies. This could be
done as part of a band to facilitate human-robot interaction.
Alternatively, they can independently perform a song or a
melody for entertainment or other use cases like music ther-
apy. Normally, musicians use sheet music to communicate
and document pieces. Reading notes and performing the
sequence of notes on an instrument are key competencies
of performers. A similar process can be executed by robots
as well.

In our project, we created a system that utilizes a six-
degree-of-freedom robot (Universal Robotics UR5) equipped
with an additional mallet holder, as shown in Figure 1. This
system employs a camera in conjunction with a self-trained
optical music recognition neural network to perceive music
pieces. After generating a suitable motion trajectory, the
piece can be played on the marimba. It does so using standard
mallets within a specially designed actuated compliant mallet
holder. The actuated single degree of freedom allows for

1https://github.com/UHHRobotics22-23/MarimbaBot

Fig. 1: The MarimbaBot playing the Marimba. The following
components are visible: The Marimba, the UR5 robot arm,
the mallet assembly, and the audio feedback microphone.
The whiteboard, camera, and computer are not visible.

dynamic spacing between the two mallets. Voice commands
control the actions of the robot and the played notes are
evaluated on the fly to generate a playing accuracy score.
A physics simulation environment was used as a digital
twin in the development. The trajectory generation allows
the robot to play pieces at differing speed and loudness
configurations while preserving the relative timing of the
notes. The fields of music knowledge, engineering, and
computational intelligence were combined to design a music-
playing robot.

II. RELATED WORK

In the field of robotics and dexterous manipulation, the
pursuit of human-like dexterity in robotic hands has been
a significant challenge. ”ROBOPIANIST: Dexterous Piano
Playing with Deep Reinforcement Learning” by Zakka et
al. [14] is a notable and recent endeavor in this domain.
This work explores controlling bi-manual anthropomorphic
robotic hands in a simulation environment to play the piano,
a task demanding high spatial and temporal precision, coor-
dination, and planning. The resulting policies exhibit highly

https://github.com/UHHRobotics22-23/MarimbaBot

2

dexterous behaviors and produce visually and acoustically
pleasing performances.

Of particular relevance to our project, is the dexterity
exhibited by ROBOPIANIST. Our project focuses on a
similar goal but distinguishes itself by using two mallets
directly instead of hands, designed specifically for playing
the marimba. This drastically reduces the dimensionality
of the task. We also chose a non-learning-based technique
for our motion and deployed it on a real robot platform.
Moreover, our project incorporates speech recognition, vision
input for interpreting music notes, and interaction with
humans, demonstrating a comprehensive fusion of robotics,
music, and human-machine interaction.

Exploration in the domain of marimba-playing robots has
been conducted by Hoffman and Weinberg [2], who intro-
duced ”Shimon”, a marimba player designed to collaborate
and improvise with human musicians. Shimon is equipped
with four arms affixed to a rail capable of traversing the
marimba’s length. Each arm is furnished with two mal-
lets, one designated for ”black” keys and the other for
”white” keys. This design showcases an innovative method
for enhancing marimba performance, a concept that resonates
with our objective of using robotic arms with two mallets
explicitly tailored for marimba play. Our project extends
beyond conventional marimba playing, integrating speech
recognition, vision input for interpreting musical notes, and
interactions with human collaborators, ultimately exemplify-
ing a holistic fusion of robotics, music, and human-machine
interaction. Moreover, our project is not only more human-
like but also more general-purpose, built using a multi-
purpose robot arm.

III. PROJECT GOAL

The project aimed to create a robotic system capable of
visually interpreting musical notes from a whiteboard and
using an industrial robot arm to play them on a marimba
with two mallets. Additionally, the system was designed for
voice control, enabling natural human interaction.

IV. IMPLEMENTATION

The Implementation of the MarimbaBot can be separated
into seven different chapters music audio processing, com-
mand recognition, vision, motion, simulation, behavior, and
hardware. The whole system is controlled by voice com-
mands, therefore the implementation of an audio setup was
crucial for controlling the system. The command recognition
and motion are connected via the behavior state machine.
With a voice command, the visual part of the framework
is activated. The Camera captures an image of the notes,
which are subsequently extracted via a neural network. In
the motion, the trajectories for hitting the right notes at
the right time with the two mallets are calculated. During
development, we utilized a physics simulation setup. In the
end, the trajectories are executed using a UR5 robot and the
3D-printed mallet assembly.

A. Vision

The MarimbaBot should be capable of visually reading the
notes, as defined in our project goals. Notes are presented to
the robot on a whiteboard. They can be represented by black
note-shaped magnets or drawn manually using a whiteboard
marker. A webcam (Logitech StreamCam) is capturing the
whiteboard content for further processing. After preliminary
experiments with existing OMR (Optical Music Recognition)
solutions, we decided to develop a custom end-to-end neural
network solution. Previous OMR techniques (like Mozart2

or Oemer [13]) largely rely on handcrafted logic to visually
parse the image even if they utilize some learning based
techniques. In contrast to that, our method bases itself on
recent advances in image-to-text models, mainly used for
image captioning or visual document understanding. We train
a model to predict a textual representation of the music
directly from the given image. As a representation, a subset
of the LilyPond [9] syntax is used. Normally, LilyPond
is used for rendering music notation based on a markup
language. We train the model to perform the inverse of the
rendering operation.

In the beginning, a minimal setup for testing purposes was
created. Limiting the key to C major, not including chords,
dynamics, and many other things allowed us to see if the
approach is viable and detect issues without directly solving
a too complex problem.

After solving said task sufficiently well, the notation was
extended to include other keys, dynamics, chords as well and
articulations.

1) Dataset: Using the LilyPond [9] software for generat-
ing artificial training samples aligns with our choice of the
LilyPond markup language as the target format for our model
output. This approach facilitates the straightforward creation
of an extensive dataset comprising synthetic samples. The
generation of these samples originates from random Lily-
Pond notations, distinct from any pre-existing musical com-
positions, ensuring precise control over the data distribution.
This level of control empowers the efficient coverage of edge
cases, essential in music-related applications.

The data generation process outlined in this study capital-
izes on a Python script harnessing the capabilities of the Ab-
jad3 library to construct synthetic music scores in LilyPond
format. The process commences with script configuration,
granting users the ability to define various parameters, such
as the number of samples and the minimum note durations.

To execute this, we initiate the generation by randomly
sampling sets of bars comprising notes, chords (two notes),
and rests. Subsequently, these musical elements are consol-
idated into a LilyPond string, which is further subjected to
random modifications based on the pre-defined configuration.
This configuration allows for the inclusion or exclusion of
several musical components, including tempo, slurs, dy-
namics, articulations, repeats, and major or minor scales.
Following these operations, the resulting data is stored in
the form of LilyPond ”.ly” files, rendered PNG images, and

2https://github.com/aashrafh/Mozart
3https://github.com/Abjad/abjad

https://github.com/aashrafh/Mozart
https://github.com/Abjad/abjad

3

(a) A randomly generated sample rendered
using LilyPond.

(b) A randomly generated sample using the
handwritten style rendering.

(c) Sample with random data augmentation
applied to it.

Fig. 2: Different artificial dataset samples.

textual LilyPond notation strings, serving as ground truth
references.

The incorporation of multiprocessing capabilities within
the script expedites dataset generation by enabling parallel
processing. Significantly, the script ensures the integrity
of the generated samples, thereby averting redundancy.
Achieved through judicious use of random sampling, this
data generation process harmonizes flexibility with effi-
ciency, culminating in substantial datasets relevant to diverse
music-oriented applications. A representative generated sam-
ple is illustrated in Figure 2a.

However, using only LilyPond for data generation has
several drawbacks. First of all, some symbols significantly
differ between the whiteboard magnets and the font uti-
lized by LilyPond. For example, successive eighth notes in
LilyPond’s font are always represented with a connected
stroke as seen in Figure 2a, while our whiteboard magnets
only provide the notes as individual symbols with associated
individual flags as seen in Figure 4. Both variants are valid
musical notations, but the differences can lead to erroneous
or ambiguous recognitions in a vision model. There are also
concerns regarding more subtle overfitting on the exact shape
of the notes in LilyPond. This is especially relevant if some
of the notation on the whiteboard is manually drawn.

To approach this issue, a custom rendering engine sup-
porting our subset of the features present in LilyPond was
created. It samples each symbol from a number of different
hand-drawn ones, creating a diverse dataset. Our handwritten
notation consists of 26 separate symbol classes, which are
used complementary to construct the final result. In the case
of notes, for example, we differentiate between note head
and note stem in order to construct complex note structures,
while using only a small number of symbol classes consisting
of four to six hand-drawn PNG images. All 110 symbol
images are displayed in Figure 3. Additionally, the horizontal
distance between symbols and the vertical distance between
staff lines can be randomized by defining minimal and max-
imum vertical and horizontal distances. Like the LilyPond
render, our handwritten script also incorporates basic music
notation rules, such as bar separation, dot placement, ledger
lines, stem and flag direction, and adaptation of accidentals
affected by key signatures or previous accidentals within the
same bar. A sample created with this renderer can be seen

Fig. 3: The full symbol set for the automated handwritten
data generation consists of 110 handwritten images.

in Figure 2b. Both presented methods to render the notation
without any perspective or lighting changes. To account for
that, a number of data augmentations are applied to both data
sources. These augmentations include:

• Affine transformations
• Perspective transformations
• Brightness changes
• Contrast changes
• ”Shadow”
• ”Sun flare”
• Pixel dropout
• Color shift
• Zoom blur
An augmented sample can be seen in Figure 2c. The

synthetic part of the dataset consists of 200000 of these sam-
ples, evenly split between the LilyPond and ”handwritten”
rendering. To further improve the domain shift into the real-
world a small set of annotated real-world images is added.
Due to the high effort required for the manual real-world
data collection, this set includes only 127 distinct pieces.
Each piece is captured from multiple angles, resulting in
608 samples. Capturing the same sequence too many times
could result in overfitting on the sequence of notes, so we’re
capturing a maximum of five samples for each piece. We also
include a number of real-world negative samples, to avoid
hallucinations in cases where no notes are present on the
whiteboard.

2) Model: The model itself is based on the Donut [3]
model. We use the provided model as a starting point but
perform a few major modifications. Mainly, we noticed that
switching the model’s tokenizer to a custom one improved
the overall performance. The original model comes with a to-
kenizer that was optimized for natural language tokenization,
but LilyPond data benefits from character-level tokenization.

4

Fig. 4: Real-world whiteboard sample with cross attention
map overlay, showing the token in the vision transformer
that was most influential for the generation of the g token.

Here, we illustrate a tokenization of the following Lily-
Pond string:

• String: b’8 b’4
• Normal Tokenizer: b | ’ | 8 | b | ’4
• New Tokenizer: b | ’ | 8 | b | ’ | 4

The normal tokenizer combines the ’ denoting the octave
and 4 denoting the note’s length. Due to patterns learned
during the training on natural language, this combination
is not consistent across notes and other notes might be
split differently. This makes it harder for the model to
disentangle these concepts (e.g. the octave and duration),
as sometimes both are predicted at once in an inconsistent
manner. Using character-level tokenization fixes this issue,
but it also increases the resources needed to represent longer
keywords like \tempo, so they are explicitly added to the
tokenizer.

The vision encoder of the Donut model is based on
the Swin [8] transformer [11] architecture. A BART [7]
transformer [11] decoder is used to generate the textual
representation by querying features from the vision backbone
via cross-attention. A visualization of the cross attention for
a given token can be seen in Figure 4. Overall, the model
has 143 million trainable parameters. During training, a pure
cross-entropy classification loss is applied for the next token
prediction. No handcrafted domain-specific loss function is
utilized.

B. Command Recognition

One main objective of the robot’s functionality is to
adeptly receive and process human commands conveyed
through speech, thus enabling users to interact with the robot
naturally and facilitating reciprocal communication.

In the operational pipeline of this subsystem, the initial
phase involves keyword spotting to identify and activate upon
detecting the designated keyword signals. Subsequently, hu-
man voice activity detection tools are deployed to precisely
determine the end of speech. Following this, the whisper
[10] model is utilized to transcribe the spoken content into
text format. Finally, the system undertakes the crucial task

of command extraction from the transcribed text, after which
the extracted command is executed by the robot.

Therefore, the command recognition subsystem encom-
passes four core components:

• Keyword spotting
• Voice activity detection
• Speech transcription
• Command extraction

1) Keyword spotting: The keyword spotting is based on
this GitHub Repository4. It is a lightweight, RNN-based
signal classifier. Basically, it first uses sliding windows on
the chunks of raw data to extract the Mel Frequency Cepstral
Coefficients (MFCC) features, and then the recurrent neuron
network will be used for signal classification to figure out, if
data chunks belong to the keyword speech signal or not. The
dataset of keyword spotting is collected manually, it consists
of a wake-word set and a not-wake-word set. And the dataset
of background noise, Public Domain Sounds Backup5, is
involved, as a part of the not-wake-word dataset.

2) Voice activity detection: In conjunction with keyword
spotting, voice activity detection plays a pivotal role. Its
primary purpose is the identification of speech termination
within the audio stream. This feature greatly assists in
segmenting the sentence of speech accurately, since our
speech transcription model is context-dependent.

3) Speech transcription: Subsequent to voice activity
detection, the subsystem employs a multilingual speech
recognition model, which is the Whisper [10] model, to tran-
scribe spoken language into textual form. This transformation
ensures the subsequent processing of spoken commands in
text format. The Whisper architecture presents a straight-
forward end-to-end methodology, employing an encoder-
decoder Transformer model. Initially, input audio is divided
into 30-second segments, which are subsequently trans-
formed into log-Mel spectrograms and processed through
an encoder. A decoder is trained to predict text captions
corresponding to the audio. With the incorporation of special
tokens, the model can execute multiple tasks, including
handling multilingual speech transcription, speech-to-English
translation, and so on.

4) Command extraction: The final stage involves the ex-
traction of the essential command from the transcribed text.
This phase entails regular expression to extract actionable
commands effectively.

C. Behavior

The integration of the various modules is important for
seamless and efficient task execution. Therefore, we imple-
mented a Behavior module that acts as the central decision-
making unit that orchestrates the interaction between the
different modules of the system. Figure 5 showcases the
communication between the Behavior module and the other
four main modules within the system.

4https://github.com/MycroftAI/mycroft-precise
5http://pdsounds.tuxfamily.org/

https://github.com/MycroftAI/mycroft-precise
http://pdsounds.tuxfamily.org/

5

Fig. 5: The communication flow between the Behavior node
and the MarimbaBot system.

Fig. 6: The three states of the Behavior module.

1) Commands: The recognized commands consist of
three fields; ’Command’, ’Action’, and ’Parameter’. There
are four possible values for the ’Command’ field; ’Read’,
’Play’, ’Preview’, and ’Stop’. Actions are only available for
the ’Play’ and ’Preview’ commands and include increasing,
decreasing, or specifying the speed or volume, and the option
to repeat the performance in a loop. Further, all actions
besides looping can also be provided with a ’Parameter’
value, defining to what extent the action is to be executed.

2) States and state transitions: Upon receiving a com-
mand from the Speech module, the Behavior module ana-
lyzes the context and formulates a response strategy, depend-
ing on the current state. There are three main states of the
Behavior: ’Waiting’, ’Ready’, and ’Playing’. The three states
and the state transitions using the appropriate ’Command’
values can be seen in Figure 6.

Initially, the system starts in the ’Waiting’ state. Once the
’Read’ command is issued, the latest recognized LilyPond se-
quence from the Vision module is forwarded to an interpreter
script based on the LilyPond parser provided by Abjad6 and
the MIDI handling tool pretty midi7, which translates the
LilyPond sequence into a Hit Sequence. The Hit Sequence
breaks down the LilyPond notation to only the audible tones
and assigns each tone the corresponding start-time in relation
to the entire piece, which starts at 0, as well as the duration
and volume level of the tone. This format is crucial for the
interaction between the Behavior module and the Motion
Planning module, facilitating the generation of accurate strike
timings for the marimba bars. If this translation fails due
to the received sequence not being in parse-able format, a

6https://github.com/Abjad/abjad
7https://github.com/craffel/pretty-midi

response message is sent to the Text-to-Speech module and
we stay in the ’Waiting’ state. However, if the translation
was successful, we move to the ’Ready’ state. The Behavior
now knows a playable LilyPond sequence which we call the
active LilyPond sequence, and a corresponding Hit Sequence.
Every time the active LilyPond sequence is modified, a new
Hit Sequence is calculated in response.

In the ’Ready’ state, the commands ’Play’ and ’Preview’
can now be carried out. The ’Play’ command will forward
the current Hit Sequence to the Motion Planning, where a
sufficient trajectory is calculated for our robot to play the
piece on the marimba. Similarly, the ’Preview’ command will
forward the active LilyPond sequence to an Audio module,
which plays the sequence as MIDI on the connected speaker.
Now in the ’Playing’ state, the system can still recognize and
process commands, however, giving another ’Play’ command
while still in the ’Playing’ state will cause the system to send
a response to the Text-to-Speech module, notifying the user
that the current play or preview process needs to be aborted
first via the ’Stop’ command. The ’Stop’ command aborts all
current operations and moves the system back to the ’Ready’
state. There is, however, one exception in which the system
can execute ’Play’ / ’Preview’ commands while still in the
’Playing’ state; If the ’Playing’ state was entered using a
’loop’ action, further actions that request tempo or volume
adjustments will be handled without responding to the user in
the way described earlier. The changes will then be applied
in the next iteration of the playing loop.

Actions are handled by first adjusting the active LilyPond
sequence to fit the request, and then executing the main
’Command’ value. In case of looping, the base command
execution will be repeated once the preview or motion plan is
finished, and can only be ceased using the ’Stop’ command.

3) Speech response: In the event that the MarimbaBot
system cannot perform a command due to constraints, tech-
nical issues, or other factors, the Behavior module ensures a
swift and informative response. This response is relayed to
the Text-to-Speech module, which communicates the status
to the human operator. For example, if a command like ”Play
faster” cannot be executed due to physical limitations, the
Behavior Module informs the operator of this. Similarly,
if a command was successfully executed, but the execute
does not produce audible feedback such as in the case of
the ’Read’ command, a response notifying the user of the
successful state transition is forwarded to the Text-to-Speech
module.

D. Motion
Our task requires robust and dynamic motion skills, that

allow the robot to strike the correct keys on the marimba at
the right point in time.

We utilize a standard MoveIt-based ROS motion planning
setup to calculate and execute trajectories according to the
music notes and timing information. The motion planning
interfaces with the rest of our software stack by providing a
ROS action server.

For every note we want to hit, a goal position is queried
from the robot model using the TF2 [1] forward kinematics

https://github.com/Abjad/abjad
https://github.com/craffel/pretty-midi

6

(a) (b) (c)

Fig. 7: Different key points during the hit motion.

library. The height of the goal position is slightly offset
using a parameter allowing for adjustments needed with the
flexible mallet setup. To generate the trajectory that needs to
be performed to hit a given note, we divide the problem into
three phases. In the approach phase, the robot is moved
from its home position or a previous note’s retreat position
to the new note’s approach point. In the hit phase, the mallet
tip approaches the goal position, starting at an approach
point. Located above the hit point, the approach point can
also be adjusted using parameter offsets. The retreat phase,
starts out at the hit point and moves the mallet back to a
retreat point similar to the approach point.

We solve the robot’s inverse kinematics at each phase
transition using the BioIK8. The transition points for the
hit motion can be seen in Figure 7. Interpolation during
the phase is done in joint space using the Pilz Industrial
Motion Planner9. After adjusting the timing in each phase
to match the speeds required to match the required melody
or loudness, the trajectories are concatenated and sent to the
robot controller.

To play chords, we search for notes that need to be played
at the same time. We assign the left note to the left mallet
and the right note to the right mallet. The hit motion now
includes two approaches, hit and retreat points.

Using a trajectory optimization approach, considering joint
space as well as Cartesian space constraints would lead to a
more optimal trajectory, allowing for faster and more natural
playing. However, after some preliminary experiments, this
direction was abandoned in favor of the simpler approach
described earlier. We implemented another approach for
faster two-mallet playing, which generates a trajectory for
each mallet in Cartesian space, which is later translated into
joint space. While theoretically allowing for more complex
behaviors, like playing two notes in fast succession with
different mallets. The approach was subject to many edge
cases where e.g. joint space contains might be violated and
was therefore abandoned after some testing.

1) Inverse Kinematics: We employ BioIK as our inverse
kinematic solver. It is able to search for a valid robot joint
configuration that satisfies a number of constraints. Due
to our expanded objectives, analytical inverse kinematics
solutions, typically applicable to the UR5 [5], are no longer
realistic. We therefore use a numerical method like BioIK.
To move a single or both mallets to a goal position, the
following goals are considered in the optimization:

• Position Goals: The goal position of one or both mallet
heads.

8https://github.com/TAMS-Group/bio_ik
9https://github.com/PilzDE/pilz_industrial_motion

• Link on Plane of wrist: We want to keep the robot’s
wrist on a horizontal plane above the marimba. This
way the robot is discouraged from hitting with the whole
arm and uses rotations of the wrist instead.

• Link on Plane of right mallet: We keep the right mallet
above the left mallet if we only play with one of them
(the left is the default). The distance is configurable
and needed to prevent the right mallet from accidentally
hitting the marimba.

• Joint Goal: We want to keep the robot’s wrist 3 joint
fixed at zero if only one mallet is utilized. This makes
the robot less overactuated and results in more consis-
tent solutions.

• Joint Goal: To move the right mallet out of the way
during single mallet strokes, the mallet finger joint can
be fixed to 70 degrees.

• Minimal Displacement Goal: For more consistent solu-
tions a minimal displacement goal relative to the robot’s
home position (idle position above the marimba) is
applied.

2) Timing: Ensuring that the robot hits the marimba bars
at the right points in time is crucial for an accurate perfor-
mance. The timing of the robot’s trajectory also influences
how hard or soft a given key is hit. In order to manage
this process, the speed of each of the sub-trajectories is
adjusted. Based on the commanded volume, the hit trajec-
tories duration are adjusted. The duration of the approach
trajectory is also altered based on the commanded timing.
Here we also need to consider that the hit itself isn’t instant,
so the durations of the hit trajectories count towards the
approach times. The robot only slows down the plans from
the Pilz Industrial Motion Planner, which is configured to
procure the fastest possible plan. Speeding them up will
exceed the robot’s acceleration or velocity limits, so instead
the approach time is clamped and a warning is issued. The
robot could also reject the goal, but we explicitly opted for
a best-effort behavior. Interpolation is applied to keep the
trajectory at a certain density after significant slowdowns.

In a more formal manner, the timing can be expressed by

t̂d = td + (1− l) · tmax

t̂a = max(∆tn − t̂d − tr, ta)

where t̂d denotes the duration of the down stroke trajec-
tory, t̂a represents the duration of the approach. td, ta, and
tr represent the durations of the initially planned trajectories,
which serve as a lower bound of the trajectory duration.
∆tn represents the time span between the previous and
subsequent note, while l describes the goal loudness in the
interval [0, 1]. The down stroke duration extension of the
most silent note is defined by tmax.

In the end, the full trajectory is executed via MoveIt, which
executes it on the robot using a JointTrajectoryController.

E. Simulation

The simulated environment consists of the UR5 arm, the
compliant double mallet, and the model of the marimba.
All of the objects in the scene are modeled in the Unified

https://github.com/TAMS-Group/bio_ik
https://github.com/PilzDE/pilz_industrial_motion

7

Robotics Description Format (URDF). The Gazebo physics
engine [6] is used to simulate forces, contacts, as well
as other physical aspects of the environment. The URDF
files also include the <inertial> blocks that specify the
inertial properties for each link, and <transmission>
blocks for joints to allow control in Gazebo. The joints
use a transmission with EffortJointInterface as a hardware
interface.

The URDF description of the marimba is modified in the
simulated environment to allow detection of bar hits: the
bars are considered mounted on a prismatic joint instead of
the usual fixed one, to enable detection of contact velocities.
The prismatic joints have a range of ±0.1 cm and the bar
is considered hit if the joint moves with a velocity above a
certain threshold value (0.5 cm/s).

In addition to the aforementioned changes, the simulation
also includes PID values for all of the actuated joints,
since unlike the real setup, we do not have the real robot
controller and must therefore run separate PID controllers.
Some simplifying assumptions are made about the physical
properties, such as assuming diagonal inertia matrices.

The simulation is tightly integrated with the other com-
ponents of the project: the planning node is launched at the
start of the simulation and controls the UR5 and the double
mallet attachment; the URDF descriptions are shared with
RViz visualization in the real robot setup. Controlling the
robot is done through the same interface as the real setup,
i.e. using the action server and the planning node. While the
simulation is running, the environment is visualized in the
Gazebo GUI, RViz with the MoveIt motion planning plugin,
as well as optionally launching PlotJuggler10 to plot the bar
joint velocities (and therefore the raw values used to detect
contacts) in real-time. Another node is running to monitor
the bar joint velocities, perform contact detection, and write
the hits to a MIDI file at the end of the simulation.

F. Hardware

The hardware assembly allows for the controlled and
compliant usage of two mallets in the UR5’s three-finger
gripper 11.

1) Design and 3D-Printing: The ergonomics of the hu-
man hand are used as a model for the development of the
3D model. This 3D Model, which can also be found on
GitHub12, full-fills two requirements. Firstly a compliant
mechanism to create proper sound on the marimba. Secondly
an assembly that could hold two mallets and vary the distance
between the two mallet heads. The mallet is mounted in
a mallet-car and secured using screws. This mallet-car is
attached to the housing by an axle to allow the mallet to
swing in the vertical direction. To limit compliance, strong
rubber bands and a shock absorbing sponge are attached
to the mallet-car and housing. By the choice of the rub-
ber bands, one can choose the degree of compliance. The

10https://github.com/facontidavide/PlotJuggler
11https://robotiq.com/products/

3-finger-adaptive-robot-gripper
12https://github.com/UHHRobotics22-23/hardware_

design

intention is to imitate the human hand as it holds the mallets
loosely and allows them to swing in the hand. Two of these
assemblies are attached to the main housing with one of the
attachment points being actuated by a servo while the other
remains rigid. Using the servo joint the distance of the two
mallet can be adjusted. The connection was designed as a
quick-exchange plate to allow different mallet-housings to
be mounted on the main body.

2) Electronic setup: The electronic setup was designed to
fulfill the following requirements:

• independent power supply
• compact design
• wireless control
• reliability
Independent power is provided by a 7.4 volt, 2200 mAh

battery. The use of a Raspberry Pico W with integrated
wifi enables a compact design. By using the wifi as a
communication interface, wireless and fast control is made
possible. The components have been securely soldered and
installed inside the case to ensure the reliability of the
components. For a detailed overview of the circuit see the
hardware documentation in the repository 12.

3) Software: Communication between the hardware ex-
tension and ROS takes place via a wifi-based UDP connec-
tion. The UDP connection ensures that the data is transferred
quickly. The transmitted informatio can be separated into
the classes limits, current position, and position commands.
The protocol used for the communication between ROS and
the microcontroller is based on simple string commands. At
first, the ROS side is expected to request the bounds and
resolution using the ”l” command. This allows for multiple
devices with different bounds to be used interchangeably.
The ”p” command is used in the read phase of the hardware
interface. Lastly, the ”s” command allows the ROS side to
give an integer-valued command position to the microcon-
troller. A detailed description is contained in the hardware
repository 12.

G. Music Note Detection

Evaluating the robot’s marimba-playing performance is
vital. To aid in this assessment, a dedicated submodule has
been developed to evaluate the robot’s music using audio
feedback. This submodule detects Western musical notes
from raw audio, providing visual representations in MIDI
figures and the Constant-Q Transform (CQT) spectrum.
Additionally, it offers a recall score to assess overall motion
quality.

In the subsystem’s pipeline, raw data first undergoes
Constant-Q Transform (CQT) to create a spectrogram. CQT
is a time-frequency representation with evenly spaced fre-
quency bins on a logarithmic scale, ensuring consistent ratios
of center frequencies to bandwidths (Q-factors) across all
bins. Next, the amplitude spectrogram is converted into a
dB-scaled version, which serves for computing the spectral
flux onset strength envelope. Following this step, onset events
are localized using the peak-pick method. To determine the
pitch of these onset events, a monophonic pitch classifier

https://github.com/facontidavide/PlotJuggler
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://github.com/UHHRobotics22-23/hardware_design
https://github.com/UHHRobotics22-23/hardware_design

8

called CREPE [4], which operates directly on the CQT
spectrum using Convolutional Neural Networks (CNN), is
employed. Lastly, we compare the detected musical notes
with ground truth provided by vision recognition to calculate
the recall score, offering a quantified measurement of the
robotic motion.

V. RESULTS

In the following Section, we highlight some evaluations
of the different subsystems presented in Section IV.

A. Vision Evaluation

For the evaluation of our vision pipeline we consider three
different models. All of them use the same architecture, but
their training data and tokenizer differ. A detailed comparison
against a third-party baseline is not performed. We tried to
include both Mozart13 and Oemer [13] as our baseline, but
both had runtime errors on all presented whiteboard samples.
Also, the long runtime of 3-5 minutes in the case of Oemer
ruled it out for our interactive use case. The first model we
want to evaluate is the Base model, which is one of our first
models. It is trained on a reduced set of notation (C Major,
no dynamics and accents, no chords) and serves as a proof
of concept. Training it on extended LilyPond data resulted in
the Extended model. The next iteration featured a character-
level tokenization as well as an extended handwritten dataset.
It is called Extended Char.

TABLE I: Edit distance on real whiteboard data

Model Whiteboard Extended Whiteboar Basic

Extended Char 0.1 ± 0.3 0.57± 0.92
Extended 17.9± 4.76 1.1± 0.54
Base 67.6± 3.98 0.24 ± 0.42

TABLE II: Edit Distance on generated handwritten notation

Model Handwritten Extended Handwritten Basic

Extended Char 2.41 ± 6.34 0.045 ± 0.45
Extended 50.92± 17.12 1.56± 1.54
Base 64.16± 21.38 0.845± 1.44

TABLE III: Edit Distance on data generated using LilyPond

Model LilyPond Extended LilyPond Basic

Extended Char 0.735 ± 0.735 0.04 ± 0.4
Extended 2.77± 5.62 0.765± 0.79
Base 59.88± 20.64 0.12± 0.61

All of these models were evaluated on six different test
datasets. Table I shows the evaluation on data collected in the
real-world on the whiteboard. It is split into two datasets,
one containing basic C Major notation and one which also
includes the extended notation. As expected, the Base model
which is not trained on the extended notation fails to predict
the extended notation. Also, due to the high manual effort
involved with the real-world data collection the size of the

13https://github.com/aashrafh/Mozart

extended dataset is very limited. It only includes 10 images,
while the basic one contains 30. So we need to consider
this part of the evaluation as less reliable, as many edge
cases are not covered in the data. Still, similarly to the other
datasets, we are able to observe a significant improvement
with the Extended Char model for the extended notation.
Interestingly, it is slightly outperformed by the Base model
for the basic notation. This could be the case because the
number of basic notation real-world training samples takes
up a larger fraction of the training data if no extended
notation is present in the artificial dataset.

In Table II the models are evaluated on test data which
was generated using the handwritten style data generation.
The datasets include 200 samples each. We can see that the
Extended Char model also scores very well in the evaluation.
It can also be observed, that the Extended model fails
to generalize to the handwritten notation from extended
LilyPond data alone.

The Extended Char model version also leads the eval-
uation on data which was generated using LilyPond (see
Table III). Similar to the handwritten test datasets, the
LilyPond ones also include 200 samples each. As in all other
cases, the Base model fails on the extended notation. While
not performing best, the performance of the Extended model
is significantly better on the LilyPond data.

As our evaluation metric, we utilized the edit distance
(Levenshtein distance) of the predicted LilyPond strings.

Some limitations of our vision approach include:
• The data includes only a maximum of 3 bars, so the

model is not capable of processing pieces much longer
than that reliably.

• The models space and compute complexity concerning
the output sequence length grow by the power of two
due to the transformer’s self-attention layers. Currently,
we only have up to 60 tokens per piece. This is a result
of the limited number of bars in our dataset. The effect
is not yet relevant at this comparably small context size
but could impact the text generation speed for longer
pieces.

• The training data only includes notation in landscape
format and the dimensions roughly resemble the nota-
tion on the whiteboard. Therefore, a zero-shot gener-
alization to a more classical optical music recognition
task can not be expected. A less domain-specific dataset
would be needed to approach this task.

B. Motion Evaluation

This Section is mainly concerned with the influence of
three major parameters in the trajectory generation on the
note’s loudness. To perform this evaluation, a microphone
has been placed next to the C4 key. Due to the pitch-
dependent perception of loudness by the human ear, only
relative measurements from one pitch are compared. First
of all a human baseline has been collected by hitting the
key as hard as possible. All following measurements are
compared against this baseline. It needs to be noted that the
robot plays significantly softer than the human player. The

https://github.com/aashrafh/Mozart

9

0.05 0.10 0.15 0.20 0.25 0.30
Hit Height (m)

28

26

24

22

20

18

Lo
ud

ne
ss

 (d
B)

Hit Height / Loudness Relationship (Normalized)
Normalized Loudness

Fig. 8: Effect of the approach point height over the marimba
on the loudness relative to a human baseline.

0.05 0.00 0.05 0.10 0.15 0.20
Approach Point X Offset (m)

28

26

24

22

20

18

16

Lo
ud

ne
ss

 (d
B)

Approach Point X Offset / Loudness Relationship (Normalized)
Normalized Loudness

Fig. 9: Influence of the approach points offset in the X
direction on the loudness relative to a human baseline.

robot’s acceleration and velocity limits have been adjusted to
maximize the loudness. While an in-depth ablation of these
parameters would be possible, our focus lies on the trajectory
generation parameters. Three major ones include:

• Approach point height (Z Offset)
• Approach point X offset
• Hit point Z offset

Figure 8 shows the influence of the height of the approach
point on the loudness. Higher approach points allow for a
longer acceleration period, but can nevertheless lead to a
soft tone because of the dynamics of the compliant mallets
during the acceleration and deceleration phases. Too short
approaches also result in a very faint note, as the short
acceleration phase leads to a low impact velocity of the
mallet head. The optimum seems to be an approach from
circa 20cm above the Marimba. It also needs to be con-
sidered, that increasing the stroke distance leads to a slower
maximum playing speed with given acceleration and velocity
constraints.

Offsetting the approach and retreat point to the front leads
to a more circular mallet head trajectory during the approach,
which is more closely aligned with both the passive and
actively driven joints in the wrist and mallet mount. This

0.00 0.01 0.02 0.03 0.04 0.05
Hit Point Z Offset (m)

32.5

30.0

27.5

25.0

22.5

20.0

17.5

Lo
ud

ne
ss

 (d
B)

Hit Point Z Offset / Loudness Relationship (Normalized)

Normalized Loudness

Fig. 10: Relation between the height of the hit point relative
to the surface of the key and the loudness relative to a human
baseline.

leads to less translational and more rotational movement in
the wrist, enabling faster peak speeds. Tuning this offset
can significantly influence the loudness as seen in Figure 9.
An offset of about 15cm seems to be optimal. This could
very much be dependent on the approach height, but both
variables are analyzed independently for now.

Due to the compliance of the mallet holder assembly, off-
setting the hit point might influence the loudness. Breaking
slightly above the marimba could still lead to a short impact,
but the mallet is not pressed down dampening the note
shortly after the initial impact. On the other hand, breaking
too early might result in no impact at all. This can be seen in
Figure 10. While it suggests that breaking above the marimba
is beneficial, one can also observe that for an offset of 5mm,
the mallet fails to substantially impact at all, approaching the
experiment’s noise floor of −39.58db.

In addition to a purely loudness-based evaluation, one
might also want to evaluate if a given note was hit at all
at the right time during a music piece. While we are able to
perform such an evaluation for each played piece at runtime,
no specific numbers are included in this report. This is mainly
the case because the recall of the onset detection, especially
for high notes, is quite low. Also, the collection of a human
baseline is much more difficult, as it highly depends on the
skill of the subject and we have no professional players on
our team.

Some limitations of our current motion pipeline include:
• Non-optimal trajectories due to handcrafted motion

heuristics.
• While the mallets are able to hit at the same time, they

are not able to hit independently in short succession.
• Only the left mallet is used for single mallet playing.

Utilizing the right one might improve the maximum
playing speed.

• Compared to a human player, the robot plays compara-
bly soft. This can be observed in e.g. Figure 8.

• Chords including both levels of the marimba might lead
to significant and slow arm movement.

• As only one robot arm is utilized, the capabilities of a
human with two arms can not be matched.

10

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
delta: local mean threshold

0.4

0.5

0.6

0.7

0.8

0.9

1.0
pr

ec
isi

on

Fig. 11: Local mean threshold of onset detection.

0 10 20 30 40
amplitude reference

0.746

0.748

0.750

0.752

0.754

0.756

0.758

pr
ec

isi
on

Fig. 12: Amplitude reference for envelope calculating

C. Audio Evaluation

This section will dive into the evaluation of monophonic
music note detection performance, with a primary focus on
examining the impact of two key factors: The local mean
threshold offset represented by the delta (δ), increasing the
(δ) will discard more peak with small amplitude. And the
amplitude reference expressed in decibels (dB) within the
context of envelope generation based on the CQT spectrum,
increasing the reference amplitude at the proper level will
increase the sensitivity of sensing the music note will higher
frequency, even under a nosing background.

To conduct our evaluation, we initially gathered music
audio data through manual human performance. In essence,
we had individuals play each music note individually, cap-
turing their audio as the ground truth for our music note
detection system. In a controlled experiment, we utilized
the same mallet that the robot employs, thus replicating the
robot’s striking effect accurately. However, it’s worth noting
that human motion offers greater flexibility, resulting in
significantly louder sound production compared to the robot.
For calculating the precision, we compare the percentage
of recognized music notes regarding the ground truth. For
the impact of those two factors refer to Figure 11 and
Figure 12. As we can see, the most proper value of the
amplitude reference is 35 dBs, which quite makes sense,
since increasing the reference value, on the one hand, will
increase the sensitivity of detecting the music note with high
frequency, on the other hand, it will reduce the sensitivity of
sensing the music note with lower frequency. Regarding the

local mean threshold δ, it seems to be as big as better, a most
possible explanation for that is, that increasing this value will
discard the false positives of the onset detection.

The limitations of current music note detection of the
MarimbaBot are:

• False negative detection due to the background noise
and robot motor noise

• False positive detection due to the noise and the sound
with the same frequency of music.

• Only capable of detecting the notes from monophonic
music

• Since there are multiple vibrating chambers of the
marimba, it is hard to attach a contact microphone.

• The music note C#7 can not be detected because of
the bug from CREPE.

D. Command Recognition Evaluation

Regarding the command recognition subsystem, we de-
veloped a keyword spotting model aimed at triggering the
speech recognition system, effectively streamlining the sys-
tem’s operation. To create our training dataset, we performed
a manual collection of 226 wake-word and 220 non-wake-
word audio samples, splitting them into a 2:8 ratio. Fur-
thermore, we augmented the training dataset with additional
background conversation and noise data. The test dataset
consists of 28 wake words and 44 not-wake words. The
model achieved 98.61% precision at the test dataset, detailed
results refer to Table IV.

TABLE IV: The testing result of keyword spotting

True False

Positive 27 0
Negative 44 0

Limitations of the command recognition:
• Lack of complexity of command input, since the com-

mand extractor is built by regular expression.
• False positive keyword spotting due to background

talking
• Weird output of speech transcription because faulty of

prompt

VI. CONCLUSION

In conclusion, our multifaceted project has successfully
developed a robotic system capable of playing musical notes
and chords on a marimba, integrating technologies like com-
puter vision, audio processing, and precise motion control.
It demonstrates the fusion of robotics, music, and artificial
intelligence, showcasing a robot capable of performing a
complex musical instrument with precision. Specifically, it
provides unique insights into the intersection of robotics and
music. However, the system still has several limitations and
areas open for further research. Including a lack of dynamic
adjustments, improving audio recognition, and vision detec-
tion, i.e. generalization and adaptation to different music
notations.

11

REFERENCES

[1] Tully Foote. tf: The transform library. In Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International Conference on,
Open-Source Software workshop, pages 1–6, April 2013.

[2] Guy Hoffman and Gil Weinberg. Interactive improvisation with a
robotic marimba player. Autonomous Robots, 31:133–153, 2011.

[3] Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jiny-
oung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon
Han, and Seunghyun Park. Ocr-free document understanding trans-
former. In European Conference on Computer Vision, pages 498–517.
Springer, 2022.

[4] Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello.
Crepe: A convolutional representation for pitch estimation. In 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 161–165. IEEE, 2018.

[5] Adam L Kleppe and Olav Egeland. Inverse kinematics for industrial
robots using conformal geometric algebra. Modeling, Identification
and Control, 37, 2016.

[6] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. pages 2149 – 2154 vol.3, 04 2004.

[7] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-
delrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettle-
moyer. Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

[8] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012–10022,
2021.

[9] Han-Wen Nienhuys and Jan Nieuwenhuizen. Lilypond, a system for
automated music engraving. In Proceedings of the XIV Colloquium
on Musical Informatics (XIV CIM 2003), volume 1, pages 167–171.
Citeseer, 2003.

[10] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. Robust speech recognition via large-
scale weak supervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR, 2023.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems,
30, 2017.

[12] Bianca Westermann. The biomorphic automata of the 18th century.
mechanical artworks as objects of technical fascination and epistemo-
logical exhibition. Figurationen, 17(2):123–137, 2016.

[13] Yoyo, Christian Liebhardt, and Sayooj Samuel. Breezewhite/oemer:
v0.1.7, October 2023.

[14] Kevin Zakka, Philipp Wu, Laura Smith, Nimrod Gileadi, Taylor
Howell, Xue Bin Peng, Sumeet Singh, Yuval Tassa, Pete Florence,
Andy Zeng, and Pieter Abbeel. Robopianist: Dexterous piano playing
with deep reinforcement learning. In Conference on Robot Learning
(CoRL), 2023.

	Introduction
	Related Work
	Project Goal
	Implementation
	Vision
	Dataset
	Model

	Command Recognition
	Keyword spotting
	Voice activity detection
	Speech transcription
	Command extraction

	Behavior
	Commands
	States and state transitions
	Speech response

	Motion
	Inverse Kinematics
	Timing

	Simulation
	Hardware
	Design and 3D-Printing
	Electronic setup
	Software

	Music Note Detection

	Results
	Vision Evaluation
	Motion Evaluation
	Audio Evaluation
	Command Recognition Evaluation

	Conclusion
	References

