ROSCon / IROS 2022

ROSCon / IROS 2022

ROSCon

ROSCon

ROSCon – ROS One / ROS2

What's Past the End? The Future of ROS One

- Groups with high investment in ROS1 are interested in continuing ROS one past OR's support
- Both frameworks were prominently discussed
- Migration/hybrid scenarios mentioned as well
- rclpy was pretty much the running gag of the conference... who needs python/rclpy support anyway
- ... when you can have Rust/RustDDS/rclrust instead?

ROSCon – RoboStack

Anaconda packaged ROS1/ROS2 Packages with pinned dependencies.

- If all you ever need with ROS1 is python3.8 & Ubuntu 20.04 library versions this solves all your problems on any system. Else...
- Encountered problems while solving: package ros-noetic-ivcon-0.1.7-py38he9ab703_9 requires python, but none of the providers can be installed
- Supports what they need (just as any other distributor)
- ROS-O collaboration in progress

ROSCon – JupyterLab

- Based on RoboStack
- In-Browser ROS/ROS2 programming
- Visualization/Control plugins
- Interactive URDF modelling
- Setup in at least two universities with a central server to facilitate teaching
- Might be an option for ItR?
- Useful for teaching in Python as long as no real robot is connected

ROSCon – ros2_control

ROSCon – ROS4HRI

ROSCon – better than xacro?

- Demonstrated EmPy and ERB as alternatives to xacro
- · Motivated by city-level descriptions for simulation competitions
- Lacks a community in ROS, but **can** be much more compact

```
<?xml version="1.0"?>
                                                                                       10
<sdf xmlns:xacro="http://www.ros.org/wiki/xacro"> <----
                                                                                         xv = mass * (3 * radius * radius + length * length) / 12.0
 <xacro:macro name="inertial cylinder" params="mass radius length">
                                                                                         z = mass * radius * radius * 0.5
    <xacro:propertv
                                                                                         30
     name="xv"
                                                                                         <inertial>
     value="${mass * (3 * radius * radius + length * length) / 12.0}"/>
                                                                                           <mass>@(mass)</mass>
                                                                                           <inertia>
    name="z"
                                                                                             <ixx>0(xy)</ixx>
     value="${mass * radius * radius * 0.5}"/>
                                                                                             <ixy>0.0</ixy>
                                                                                             <ixz>0.0</ixz>
   <inertial>
     <mass>${mass}</mass>
                                                                                             <iyy>@(xy)</iyy>
     <inertia>
                                                                                             <ivz>0.0</ivz>
                                                                                             \langle izz \rangle Q(z) \langle izz \rangle
       <ixx>${xy}</ixx>
       <ixy>0.0</ixy>
                                                                                           </inertia>
       <ixz>0.0</ixz>
                                                                                         </inertial>
       <ivv>${xv}</ivv>
       <iyz>0.0</iyz>
       <izz>${z}</izz>
     </inertia>
   </inertial> <
  </xacro:macro>
</sdf>
```

https://github.com/chapulina/desplate

ROSCon – Lightning Talks

ROSCon – Lightning Talks

ROSCon – Lightning Talks

TAMSVIZ - https://github.com/TAMS-Group/tamsviz

ROSCon – Exhibits

Turtlebot4

Again a well-integrated supported Turtlebot

- Demo robot for ROS2 navigation
- Raspberry Pi 4B (4 GB) powered
- 2.500€
- 7cm smaller than the turtlebot2
- ... missed the talk and didn't win the lottery :)

ROSCon – Exhibits

ROS-I workcell

- Integrated collision checking with ros2_control JointTrajectoryController
- https://github.com/ros-industrial/ easy_manipulation_deployment

ROSCon – Exhibits

Crazyflie 2.1

SKU: 114991551

\$225.00 | \$281.25 inc VAT

Add to Cart

The Crazyflie 2.1 is a versatile open sour 27g and fits in the palm of your hand.

The Crazyflie 2.1 is a versatile open sour 27g and fits in the palm of your hand. Crarange radio as well as Bluetooth LE. This using your mobile device as a controller of your computer to display data and fly with

The latest version of the successful Craz flight performance, durability and radio. ecosystem of software and deck expansi swarming.

ROSCon – PR2 Hardware Archive

Scott Hassan got divorced...

Workshop EMPP

• Who (still) cares about evaluating Motion Planners? More than the organizers thought :-)

https://motion-planning-workshop.kavrakilab.org

Workshop EMPP

The two main motifs:

- Benchmark "in the loop"/in context instead of isolated motion plans/evaluate with Humans
- Let's work on tuning Planners based on instance-level geometry
 - Planner Choice
 - Hyperparameters
 - Informed Sampling

MπNets

- Improved alternative to MPNets
- From partial point cloud input
- Drastically improved success rate over MPNets

https://mpinets.github.io/

Anca Dragan (UC Berkeley) Experimental Design

Continuous Grasp Candidates

https://sites.google.com/view/se3dif

Mujin Robotics

Main Takeaways:

- 99.9% is not enough
- Measure and validate as much as possible. Corner-cases arise
- Always consider alternatives in parallel
- More on Mujin and MechMind by Wenkai/Sam

Graph Network Simulators

https://sites.google.com/view/fig-net/

Graph Network Simulators

https://sites.google.com/view/fig-net/

ArmarX

ArmarX

RT as in ... Robotics Technology?

IAS-18 in 2023

Deadline of Paper Submission January 31, 2023 One more publication deadline to publish **before** the CML review

1889 Accepted Papers

Brad Nelson Magnetic Navigation System

Brad Nelson Magnetic Navigation System

Object-Centric Planning

Articulated Object Interaction in Unknown Scenes with Whole-Body Mobile Manipulation Mittal et al.

Base Placement

Combining Navigation and Manipulation Costs for Time-Efficient Robot Placement in Mobile Manipulation Tasks

Fabian Reister, Markus Grotz and Tamim Asfour

ROBOT LEARNING OF MOBILE MANIPULATION WITH REACHABILITY BEHAVIOR PRIORS

Snehal Jauhri, Jan Peters & Georgia Chalvatzaki

ROSA

TECHNISCHE UNIVERSITÄT DARMSTADT

Juggling

Reversible SIFT

Don't Share My Face: Privacy Preserving Inpainting for Visual Localization Himmi et al.

Drawing Bots

Robot Learning to Paint from Demonstrations – Park et al.

$$\frac{\partial}{\partial t}u(\mathbf{x},t) = \alpha \frac{\partial^2}{\partial \mathbf{x}^2}u(\mathbf{x},t) + \beta s(\mathbf{x},t) - \gamma a(\mathbf{x},t)$$

DrozBot: Using Ergodic Control to Draw Portraits Löw et al.

Robust Robotic 3-D Drawing Using Closed-Loop Planning and Online Picked Pens – Liu et al.

RL for Playing Piano

Towards Learning to Play Piano with Dexterous Hands and Touch Huazhe Xu, Yuping Luo, Shaoxiong Wang, Trevor Darrell, Roberto Calandra Stanford, Princeton, MIT, UC Berkeley, Meta AI

Bielefeld / Helge Ritter

0585 - Bio-Inspired Grasping Controller for Sensorized 2-DoF Grippers Luca Lach, Séverin Lemaignan, Francesco Ferro, Helge Joachim Ritter, Robert Haschke

Simulated Sound for URL

Motivation

Unsupervised Reinforcement Learning (URL) [M. Laster, 2021]

Impact Makes a Sound and Sound Makes an Impact: Sound Guides Representations and Exploration Noisy Agents: Self-Supervised Exploration by Predicting Auditory Events

Combined Sampling & Optimization Planning

BITKOMO: Combining Sampling and Optimization for Fast Convergence in Optimal Motion Planning

Jay Kamat, Joaquim Ortiz De Haro, Marc Toussaint, Florian T. Pokorny, Andreas Orthey

Path-Tree Plans

Path-tree Optimization

Sampling based belief-space planner

Path-Tree Optimization in Discrete Partially Observable Environments Using Rapidly-Exploring Belief-Space Graphs Phiquepal et al.

Smooth MPPI without Smoothing

Dreamer/Dreaming/DreamingV2

Playful Interactions

Transformers

3D Part Assembly Generation with Instance Encoded Transformer

Rufeng Zhang¹, Tao Kong², Weihao Wang¹, Xuan Han¹ and Mingyu You¹ Tongji University¹, ByteDance AI Lab² IEEE/RSJ International Conference on Intelligent Robots and Systems

When Transformer Meets Robotic Grasping: Exploits Context for Efficient Grasp Detection

Shaochen Wang, Zhangli Zhou, and Zhen Kan University of Science and Technology of China, Hefei, China

Harbin Institute of Technology (Shenzhen) IEEE/RSJ International Conference on Intelligent Robots and Syst

Peak Attendee - In- 👖 dat

my name is Erli Lyu and i'm from Harbin Institute of

Human Trajectory Prediction with Group Aware Spatial-Temporal Transformer

Lei Zhou Nankai University IEEE/RSJ International Conference on Intelligent Robots and Systems

Object Reorientation

Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger Allshire et al.

Dactylus-Equipped Quadruped

Kineme

Robotic Detection of a Human-Comprehensible Gestural Language for Underwater Multi-Human-Robot Collaboration Enan et al.

HRC in Reaching Tasks

Intuitive & Efficient Human-robot Collaboration via Real-time Approximate Bayesian Inference Javier Felip Leo et al.

Robo(w)Flex

Absolute Position Detection in 7-Phase Sensorless Electric Stepper Motor

Bearing holders Coils Vincent Groenhuis Gijs Rolff Koen Bosman Bearings Leon Abelmann Stefano Stramigioli Robotics and Mechatronics. University of Twente Shaft Stator Rotor Connector $7N_{\text{turns}}\Phi_0\dot{\theta}w_1n_1e^{-50\theta i}$ A_1 2R $\angle A_1 = -50\theta$ 500 and 520 are measurable! 0 2 time / sec

Active Exploration with MI Gain

max

https://sites.google.com/view/aerm

Catching Drones

Aerial Grasping and the Velocity Sufficiency Region

Tony Chen, Kenneth Hoffmann, Jun En Low, Keiko Nagami, David Lentink, Mark Cutkosky

IROS-RAL 2022 Submission

Aerial Grasping and the Velocity Sufficiency Region Chen et al.

Online Path Planning in Visibility Graph

FAR Planner: Fast, Attemptable Route Planner Using Dynamic Visibility Update Yang et al.

IROS Best Paper - SpeedFolding

Yahav Avigal, Lars Berscheid, Tamim Asfour, Torsten Kröger , and Ken Goldberg https://pantor.github.io/speedfolding