Haptic feedback in teleoperated hand-arm robot actions

Bachelor Thesis

Petrik Bottka

Thesis Advisors: Dr. Andreas Mäder, Dr. Shuang Li

January 23, 2023

• Development of a prototype glove for haptic feedback to users from a Shadow Dexterous Hand with Biotac-Sensors

Challenges in a Hand-Arm Teleoperation

- remotely located robot
- 2D visual feedback
- occlusions
- cognitive demand

local site

2

 $^2\mathsf{Shuang}$ Li. "Vision-based Perception for Dexterous Hand-arm Teleoperation". PhD thesis. Hamburg: Universität Hamburg, 2022

Haptic feedback in teleoperated hand-arm robot action

Δ

Petrik Bottka

Challenges in a Hand-Arm Teleoperation (cont.)

• visual haptic feedback

TA Haptic feedback in teleoperated hand-arm robot actions

ς

³Li, "Vision-based Perception for Dexterous Hand-arm Teleoperation"

- Integration in ROS
- Possible use in vision-based teleoperation setup of Li,⁴ Li et al.⁵
- Low-latency feedback
- Different feedback modes and levels
- Inexpensive materials: thin cotton glove with small vibration coin-motors

Petrik Bottka

нн

Haptic feedback in teleoperated hand-arm robot actions

Α

⁴Li, "Vision-based Perception for Dexterous Hand-arm Teleoperation".

⁵Shuang Li et al. "A Dexterous Hand-Arm Teleoperation System Based on Hand Pose Estimation and Active Vision". In: IEEE Transactions on Cybernetics (2022), pp. 1–12.

Questions regarding the haptic glove with vibration feedback

- Latency
- Reliability of perception
- Naturalness
- Differentiation capacity
- Subjective preferences for feedback types

n r

Haptic feedback devices

Categorization ⁶

- Kinesthetic systems: active/passive force-feedback
- Tactile systems
 - Contact: mechanical, electric, thermal stimulus
 - Non-Contact: ultrasonic waves

Wearability of devices⁷

⁶Eric Vezzoli et al. XR Haptics, Implementation and Design Guidelines. Haptics Industry Forum, 2022

⁷Claudio Pacchierotti et al. "Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives". In: *IEEE Transactions on Haptics* 10.4 (2017), pp. 580–600 ⁸ibid.

Haptic feedback devices for the hand (examples)

⁹HaptX Glove. URL: https://haptx.com

¹⁰Senceglove DK1 Exoskeleton. URL:

https://senseglove.gitlab.io/SenseGloveDocs/kinematics/dk1-kinematics.html

¹¹Dexmo Force Feedback Glove. URL: https://www.dextarobotics.com

¹² VirtuoseTM 6D TAO. URL: https://www.haption.com/en/products-en/virtuose-6d-tao-en.html

¹³Ultraleap Stratos Explore. URL: https://www.ultraleap.com/haptics/

¹⁴bHaptics TactGlove. URL: https://www.bhaptics.com/

Haptic feedback in teleoperated hand-arm robot actions

Petrik Bottka

Design considerations

Objectives for haptic simulation devices:¹⁵

- Realism
- User experience
- Usability
- Skill transfer
- Expressivity
- Transparency

Ergonomic aspects:¹⁶ form factor, weight, impairment, comfort

Haptic feedback in teleoperated hand-arm robot actions

¹⁵Vezzoli et al., XR Haptics, Implementation and Design Guidelines.

¹⁶Pacchierotti et al., "Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives".

ERM and LRA coin motors

¹⁷ Coin Vibration Motors. URL: https://www.precisionmicrodrives.com/coin-vibration-motors
¹⁸ Understanding Linear Resonant Actuator Characteristics. URL: https://www.precisionmicrodrives.com/ab-020

Haptic feedback in teleoperated hand-arm robot actions

Petrik Bottka U-

UHI #

Implementation of the Glove - Materials

- 8 × LRA coin motors (8 × 3.2 mm)
- DRV2605L Haptic Driver
- TCA9548A I2C Multiplexer
- Arduino Uno

19

¹⁹Adafruit DRV2605L Controller. URL:

https://www.berrybase.de/adafruit-drv26051-controller-fuer-haptische-motoren

²⁰Adafruit TCA9548A I2C Multiplexer. URL: https://www.berrybase.de/adafruit-tca9548a-i2c-multiplexer

Haptic feedback in teleoperated hand-arm robot actions

Petrik Bottka

11

Robot Hardware

- PR2-Robot
- Shadow Hand (5 Finger Version)
- BioTac Sensors

Haptic feedback in teleoperated hand-arm robot actions January 23, 2023

 $^{^{21}\}mathrm{Li},$ "Vision-based Perception for Dexterous Hand-arm Teleoperation"

BioTac Sensor

- Impedance
- Fluid pressure
- Microvibration
- Temperature
- Thermal flux

²²Biotac Manual. URL:

https://syntouchinc.com/wp-content/uploads/2020/09/SynTouch-Product-Manual-BioTac-2020-09-23.pdf 23ibid.

²⁴Yevgen Chebotar et al. "Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning". In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016, pp. 1960–1966

Haptic feedback in teleoperated hand-arm robot actior

13

January 23, 202

A S

Rosbag Data Recordings

Figure: Fluid pressure (pdc) values from contacts with different strengths

Rosbag Data Recordings (cont.)

Figure: Fluid pressure (pdc) values while holding an object

Rosbag Data Recordings (cont.)

Figure: Fluid pressure (pdc) and impedance (electrodes) values while contacting the sensor from the left and right side

Integration in ROS

- /biotac_listener: intermediary node, subscribes for messages from BioTac and publishes data for controlling the motors
- Node on Arduino-client: subscribes for required motor control data
- /serial_node: bridge between the Arduino client and the host ROS-System (rosserial_python)

Implementation of three different Feedback Modes

- Feedback through intensity levels
- Peedback through waveform effects
- Seedback through temporal patterns (intermittent signals)

- Different vibration-amplitudes at certain levels of contact pressure
- "Realtime Playback Mode" of DRV2605L Driver
- Motor amplitude value range: 0-127

Pdc change	Amplitude (intensity) value
=<50	no feedback
51-100	10
101-200	20
201-300	40
301-500	70
>500	127

MS

- Different types/numbers of effects at certain thresholds of contact pressure
- Internal waveform library of DRV2605L Driver
- Distinct signal for first contact

Pdc change (thresholds)	Effects (repetitions)
51	1 x "transition click"
151	2 × "strong click"
301	3 × "strong click"
601	4 × "strong click"

2. Temporal Feedback

- Different waveform frequencies at certain levels of contact pressure
- "Realtime Playback Mode" with constant amplitude
- On-time: 200 ms, off-time: 20 480 ms

Pdc change	Off-time value (ms)
=<50	no feedback
51-100	480
101-200	240
201-300	120
301-500	60
>500	20

²⁵Ryad Chellali and Huynh-Phong Pham. "Frequency modulation based vibrotactile feedback vs visual feedback in a multimodal interface for 3D pointing tasks in teleoperation". In: *2011 IEEE International Conference on Robotics and Biomimetics*. 2011, pp. 14–19

A Haptic feedback in teleoperated hand-arm robot action

Petrik Bottka

Summary

- Integration with low feedback latency
- Discrimination between levels
- Temporal feedback seems most effective
- Different feedback modes could be helpful for different types of interaction scenarios
- Possible integration in a teleoperation setup in future

Outlook

- Use of better materials, technical components
- Contact between motor and skin could be improved
- Possibility of using different types of feedback at different stages of interaction with an object
- Wireless connection

Haptic feedback in teleoperated hand-arm robot actions JS January 23, 2023

Thank you for your attention!

Ĥ

References

Adafruit DRV2605L Controller. URL:

https://www.berrybase.de/adafruit-drv26051-controller-fuer-haptische-motoren.

Adafruit TCA9548A 12C Multiplexer. URL: https:

//www.berrybase.de/adafruit-tca9548a-i2c-multiplexer.

bHaptics TactGlove. URL: https://www.bhaptics.com/.

Biotac Manual. URL: https://syntouchinc.com/wp-

content/uploads/2020/09/SynTouch-Product-Manual-BioTac-2020-09-23.pdf.

- Chebotar, Yevgen, Karol Hausman, Zhe Su, Gaurav S. Sukhatme, and Stefan Schaal. "Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning". In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016, pp. 1960-1966.
- Chellali, Ryad and Huynh-Phong Pham. "Frequency modulation based vibrotactile feedback vs visual feedback in a multimodal interface for 3D pointing tasks in teleoperation". In: 2011 IEEE International Conference on Robotics and Biomimetics. 2011, pp. 14–19.
- Coin Vibration Motors. URL: https:

//www.precisionmicrodrives.com/coin-vibration-motors.

Dexmo Force Feedback Glove, URL:

https://www.dextarobotics.com.

HaptX Glove. URL: https://haptx.com.

Li, Shuang. "Vision-based Perception for Dexterous Hand-arm Teleoperation". PhD thesis. Hamburg: Universität Hamburg, 2022. Li, Shuang, Norman Hendrich, Hongzhuo Liang, Philipp Ruppel, Changshui Zhang, and Jianwei Zhang. "A Dexterous Hand-Arm Teleoperation System Based on Hand Pose Estimation and Active Vision". In: IEEE Transactions on Cybernetics (2022), pp. 1–12. Pacchierotti, Claudio, Stephen Sinclair, Massimiliano Solazzi, Antonio Frisoli, Vincent Hayward, and Domenico Prattichizzo. "Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives". In: IEEE Transactions on Haptics 10.4 (2017), pp. 580-600.

Senceglove DK1 Exoskeleton. URL: https:

//senseglove.gitlab.io/SenseGloveDocs/kinematics/dk1kinematics.html.

SynTouch Biotac. URL: https://syntouchinc.com/.

Ultraleap Stratos Explore. URL:

https://www.ultraleap.com/haptics/.

Understanding Linear Resonant Actuator Characteristics. URL:

https://www.precisionmicrodrives.com/ab-020.

- Vezzoli, Eric, Chris Ulrich, Gijs den Butter, Rafal Pijewski, and Vincent Hayward. *XR Haptics, Implementation and Design Guidelines*. Haptics Industry Forum, 2022.
 - Virtuose[™] 6D TAO. URL:

https://www.haption.com/en/products-en/virtuose-6d-taoen.html.

