

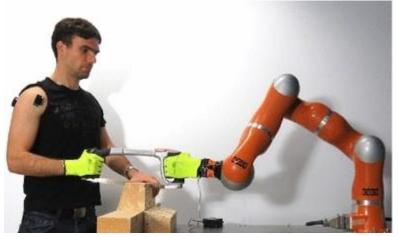
Juliane Röscheisen, 15.12.2022

Reactive Human-to-Robot Handovers of Arbitrary Objects

Outline of the presentation

- 1. Introduction and motivation
- 2. Challenges and prior work
- 3. Introduced system
 - About the paper
 - Reactive handover strategy
 - Hand and object segmentation
 - grasp selection
- 4. Evaluation
- 5. Conclusion

15.12.2022


1. Introduction and motivation

Why do we need human-robot collaboration?

- Assist rather than replace human operators
- Bring independence to humans with limited mobility
- Provide services for humans in everyday life

Robot adaptation to human physical fatigue in human–robot co-manipulation, *Auton Robot*, 2018 [2]

15.12.2022

Human-to-Robot vs Robot-to-Human Handovers

Object Handovers: a Review for Robotics, IEEE Transactions on Robotics , 2021[3]

15.12.2022

2. Challenges and prior work

Challenges

- Human hand is not easily identified
- Object may be partially occluded by fingers
- Unpredictable motions of human
- Approach directions constrained by human pose
- Robot movements must be intuitive and feel safe for humans
- A wide variety of objects used by humans every day

15.12.2022

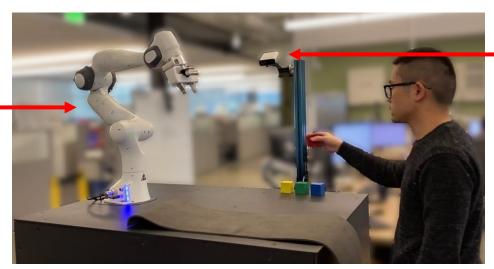
Limitations of prior work

- Restricted object and grasp poses [4, 5, 6]
- Wearable sensing needed on human to determine human pose [7]
- Limited object types ^[5]
- Open-loop: No adjustment during approach ^[6]

3. Introduced system

About the paper

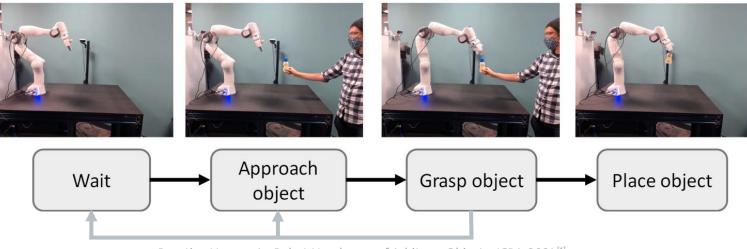
- Wei Yang, Chris Paxton, Arsalan Mousavian, Yu-Wei Chao, Maya Cakmak and Dieter Fox
- NVIDIA Seattle Robotics Lab & University of Washington, USA
- 2021 IEEE ICRA Best Paper Award on Human-Robot Interaction (HRI)
- 26 citations


15.12.2022

Setup

Franka-Emika Panda robot (6 DOF)

Azure Kinect RGBD camera

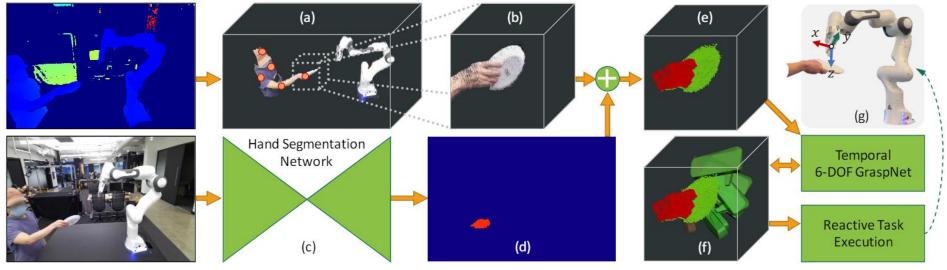

Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

Reactive handover strategy

Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

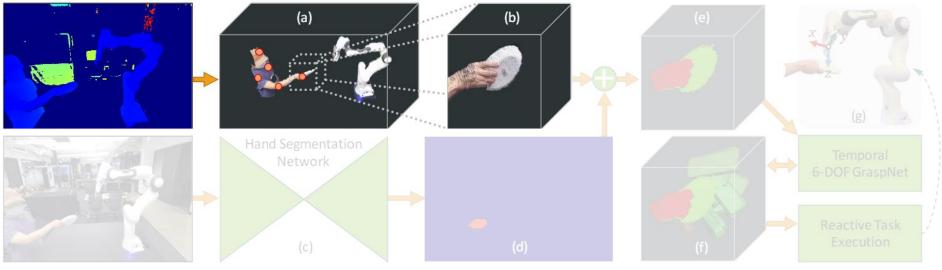
15.12.2022

Reactive handover strategy



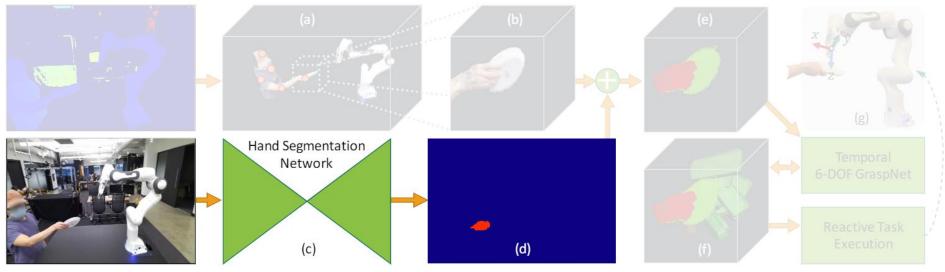
https://sites.google.com/nvidia.com/handovers-of-arbitrary-objects

System workflow


Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

Obtaining the hand-object point cloud


Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

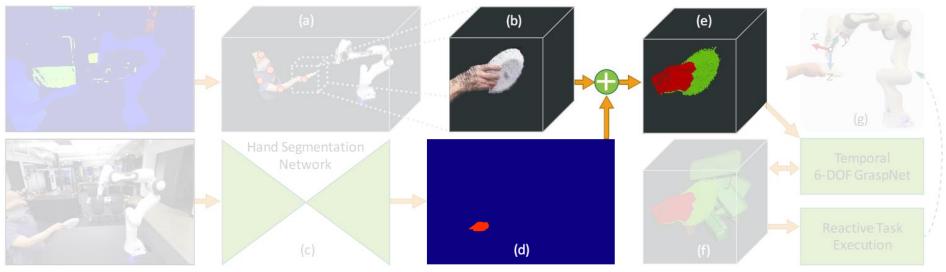
Obtaining the hand mask

Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

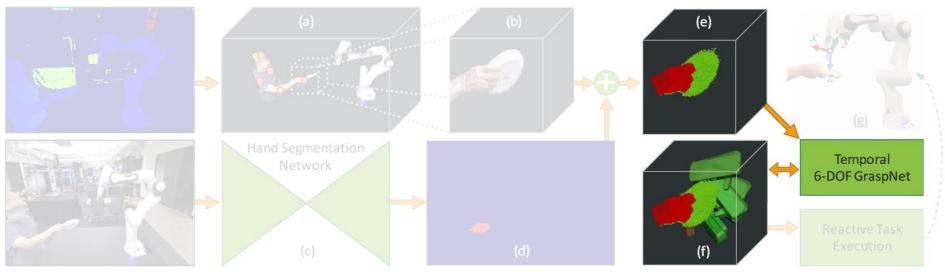
Obtaining the hand mask

- Fully convolutional network generates feature map in original resolution
- Binary segmentation mask seperates hand from background pixelwise
- Pretrained Feature Pyramid Network^[9] as Backbone, finetuning with data generated from point clouds


https://sites.google.com/nvidia.com/handovers-of-arbitrary-objects

15.12.2022

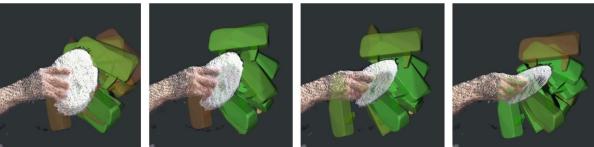
Separating the object point cloud


Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

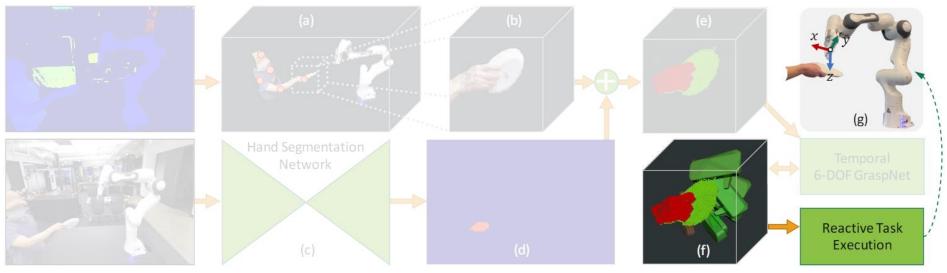
Point cloud based grasp sampling

Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]


15.12.2022

Point cloud based grasp sampling

- 6-DOF GraspNet^[8] for sampling and quality estimation
- Metropolis-Hasting sampling to ensure temporal consistency
- Remove grasps colliding with the hand point cloud


Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

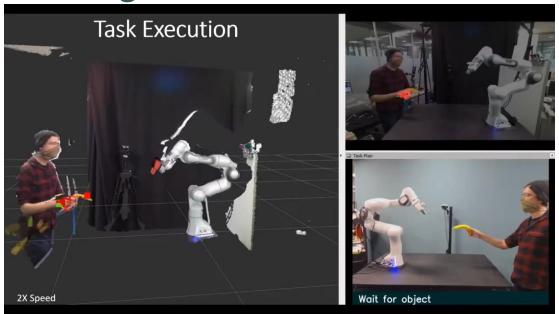
15.12.2022

Reactive grasp selection

Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

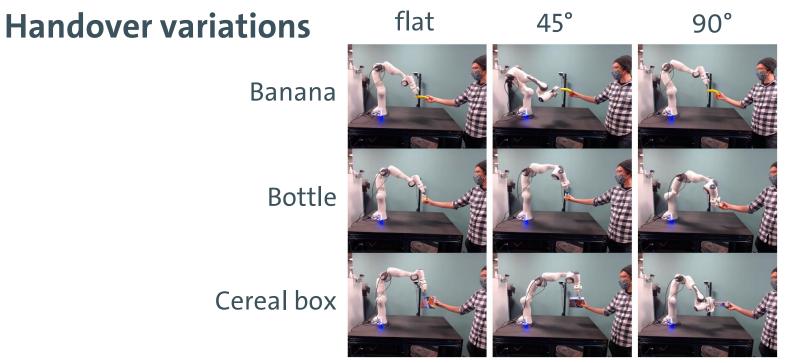
Reactive grasp selection


- Cost function:
 - $C = w_s \min(s s_{min}, 0) + w_{prev} d(x_{appr}, x_{prev}) + w_{home} d(x_{appr}, x_{home})$
- Riemannian Motion Policies ^[11] for motion planning
- Trac-IK ^[10] for inverse kinematics
- Check for collisions in joint space and cartesian space
- Attempt grasp after reaching approach position

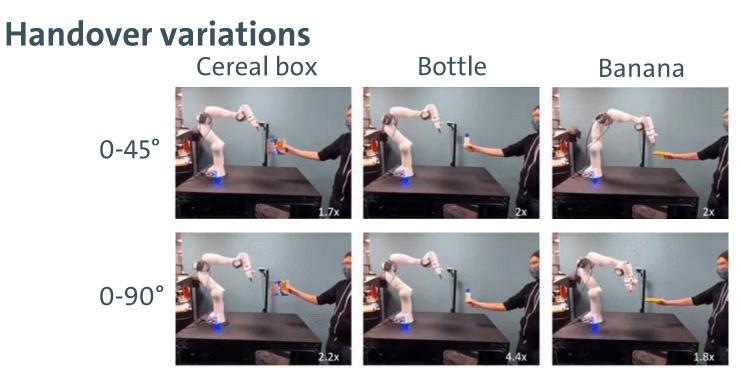
15.12.2022

Full system running

https://sites.google.com/nvidia.com/handovers-of-arbitrary-objects



4. Evaluation



Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

https://sites.google.com/nvidia.com/handovers-of-arbitrary-objects Reactive Human-to-Robot Handovers of Arbitrary Objects, Juliane Röscheisen

26

Handover variations

Static orientation

	Banana		Bottle		Cereal	Box	Overall		
Grasp Type	Time (s)	Success (%)	Time (s)	Success (%)	Time (s)	Success (%)	Time (s)	Success (%)	
Flat	11.87 ± 0.33	100%	8.46 ± 0.30	100%	10.42 ± 1.50	75%	10.27 ± 1.65	90%	
45 degrees	7.81 ± 1.53	100%	11.02 ± 1.39	75%	10.99 ± 3.83	75%	10.05 ± 2.84	82%	
90 degrees	7.94 ± 0.58	100%	18.59 ± 5.77	100%	15.89 ± 3.73	100%	14.14 ± 6.02	100%	
Overall	9.21 ± 2.12	100%	12.53 ± 5.26	90%	12.23 ± 3.91	82%	11.39 ± 4.29	90%	

Changing orientation

			-	-				
Rotation	Time (s)	Success (%)	Time (s)	Success (%)	Time (s)	Success (%)	Time (s)	Success (%)
0-45 degrees 0-90 degrees	$16.34 \pm 2.92 \\ 16.47 \pm 8.49$	100% 100%	10.86 ± 1.55 18.40 ± 6.89	100% 75%	8.23 ± 1.11 12.89 ± 6.15	100% 50%	$\begin{array}{c} 11.81 \pm 3.93 \\ 15.41 \pm 7.39 \end{array}$	100% 69%

Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

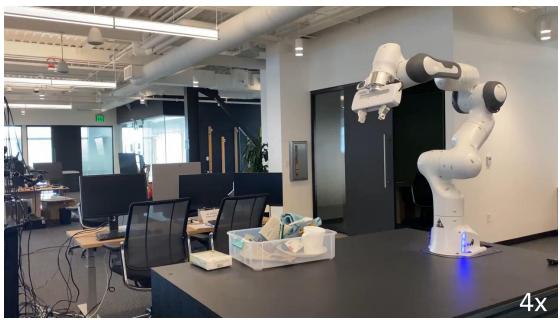
Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022

-	Medicine Box	Newspaper	Plate	Mug	Remote	Toothpaste	Scissors	Towel	Pen	Spoon	Average
Approach Time (s) Number of Attempts		$\begin{array}{c} 13.7\pm4.7\\ 1.0\end{array}$	10.2 ± 2.1 1.0	$9.1 \pm 3.5 \\ 1.8 \pm 1.8$			$11.2 \pm 3.0 \\ 1.2 \pm 1.2$		11.2 ± 4.8 2.0 ± 2.0		10.7 ± 3.6 1 3 ± 0 3
Success Rate	75.0%	100%	100%	1.0 ± 1.0 54.5%	100%	85.7%	85.7%	100%	2.0 ± 2.0 50.0%	66.7%	81.8%

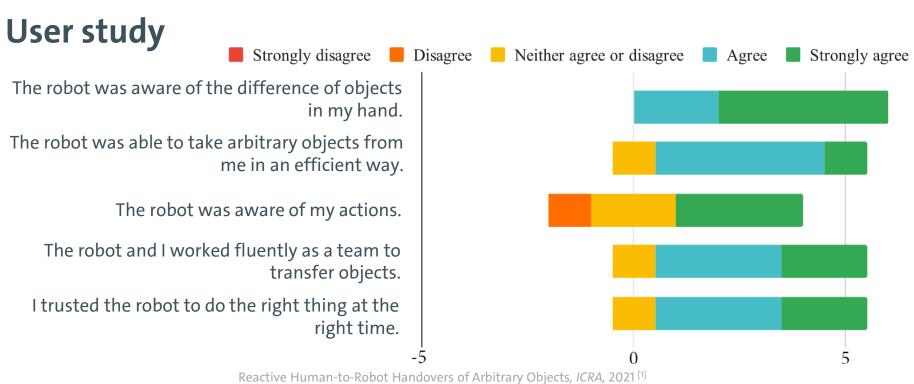
Reactive Human-to-Robot Handovers of Arbitrary Objects, ICRA, 2021^[1]

15.12.2022



https://sites.google.com/nvidia.com/handovers-of-arbitrary-objects

15.12.2022



https://sites.google.com/nvidia.com/handovers-of-arbitrary-objects

15.12.2022

Failure cases

- Missing depth information on dark surfaces
- Object recognized as hand due to failure of hand segmentation network
- Noise in object point cloud due to nearby objects

5. Conclusion

Conclusion

- System is generalizable to diverse unknown objects
- Reactive temporally consistent grasp generation
- No hard constraints on object presentation

Outlook

- Update segmentation network with wider user data
- Add more cameras for more detailed object point cloud generation
- Speed up inverse kinematics through parallelism
- Improve point cloud cropping and noise reduction

Questions and Feedback

References

- [1] W. Yang, C. Paxton, A. Mousavian, Y. -W. Chao, M. Cakmak and D. Fox, "Reactive Human-to-Robot Handovers of Arbitrary Objects," 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3118-3124, 2021.
- [2] L. Peternel, N. Tsagarakis, D. Caldwell et al., "Robot adaptation to human physical fatigue in human–robot comanipulation," Auton Robot, vol. 42, pp. 1011–1021, 2018.
- [3] V. Ortenzi, A. Cosgun, T. Pardi, W. Chan, E. Croft, and D. Kulic, "Object handovers: a review for robotics," IEEE Transactions on Robotics, 2021.
- [4] A. Edsinger and C. C. Kemp, "Human-robot interaction for cooperative manipulation: Handing objects to one another," in RO-MAN. IEEE, 2007
- [5] W. Yang, C. Paxton, M. Cakmak, and D. Fox, "Human grasp classification for reactive human-to-robot handovers," IROS, 2020.

15.12.2022

References

- [6] P. Rosenberger, A. Cosgun, R. Newbury, J. Kwan, V. Ortenzi, P. Corke, and M. Grafinger, "Object-independent human-torobot handovers using real time robotic vision," IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 17–23, 2021.
- [7] W. Wang, R. Li, Z. M. Diekel, Y. Chen, Z. Zhang, and Y. Jia, "Controlling object hand-over in human–robot collaboration via natural wearable sensing," IEEE Transactions on Human-Machine Systems, 2018.
- [8] A. Mousavian, C. Eppner, and D. Fox, "6-dof graspnet: Variational grasp generation for object manipulation," in ICCV, 2019
- [9] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," in CVPR, 2017.
- [10] P. Beeson and B. Ames, "Trac-ik: An open-source library for improved solving of generic inverse kinematics," in Humanoids. IEEE, 2015.

15.12.2022

References

[11] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, "Riemannian motion policies," arXiv preprint arXiv:1801.02854, 2018.