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Motivation

Language-conditioned learning for precise robotic manipulation from 
demonstrations

[Source: Shridhar et al. (2021), CLIPort]
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Motivation

Real-world tasks such as packing, palletizing, stacking

[Source: Shridhar et al. (2021), CLIPort]
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Contributions

Grounding semantic concepts using CLIP

End-to-end with no object models, poses, segmentation

Single multi-task model

Data efficiency (few demonstrations required)
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Scope

Work is NOT attempting to solve:

- Handling novel object types
- Arbitrary (out of distribution) language instructions

for which no demonstrations were given

Restricted to 2D pick/place pose prediction 
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Overview

Two-stream architecture:

What (semantic) pathway: CLIP

Where (spatial) pathway: Transporter Net
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Background: CLIP

Learns visual concepts from natural language supervision

[Source: Radford et al. (2021), CLIP]
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Trained on image-caption pairs 
scraped from the internet

Can be used for zero-shot 
classification & other tasks

[Source: Radford et al. (2021), CLIP]
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Background: CLIP



Vision encoder: ResNet or Vision Transformer

Text encoder: CBOW or Text Transformer

Contrastive training: given an image, predict which one of these 
~32K text snippets was paired with it 
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Background: CLIP
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Background: CLIP

Pros:

Leverages massive amounts of weakly-labeled data

Zero-shot generalization to different tasks

Cons:

Bad with abstract / systematic / fine-grained tasks (e.g. counting, 
classifying car model)

Need to provide choices / classes (unlike image captioning)



Background: Transporter

Rearrange deep features 
to infer spatial 
displacements from 
visual input

[Source: Zeng et al. (2020), Transporter Networks]
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Background: Transporter
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Problem decomposed into

- Picking

- Pick-conditioned placing

Where ot is the observation (RGB-D image) and

Pick model is an encoder-decoder 43-layer ResNet

Place model has the same architecture as pick model, but 
outputs 2 feature maps (key & query)



Background: Transporter

[Source: Zeng et al. (2020), Transporter Networks]
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query features

key features

Cross-entropy on pick and place one-hot encodings



Background: Transporter
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Pros:

No object-centric representations

Generalization to unseen objects

Cons:

Sensitive to noise & camera-robot calibration

Restricted actions defined by 2D keypoints



Background: Transporter
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[Source: Zeng et al. (2020), Transporter Networks]



CLIPort: Architecture

17[Source: Shridhar et al. (2021), CLIPort]



Given: a set of expert demonstrations

consisting of discrete time input-action pairs

ot : observation, RGB-D image

lt : language instruction

at : action =                       such that

CLIPort: Training
ζ = zeta



One-hot pixel encode Ypick and Yplace (shape = H x W x k)

Cross entropy loss 

CLIPort: Training
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k is for rotations (k=36)

(u, v) = pixel-space coordinate

action ∈ SE(2)
Observation & 
language



CLIPort: Prediction examples
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[Source: Shridhar et al. (2021), CLIPort]



CLIPort: Experiments in sim
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UR5e with a suction gripper

RGB-D reconstructed from 3 cameras (640x480)

Ravens benchmark from PyBullet (extended by 10 language 

-conditioned tasks) with an oracle

Evaluation based on 0 to 100 score (partial credit)



CLIPort: Results (simulation)
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[Source: Shridhar et al. (2021), CLIPort]



CLIPort: Experiments on real robot
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[Source: Shridhar et al. (2021), CLIPort]

Franka Panda with parallel gripper

Kinect2 RGB-D Camera

5-10 demos for training, 5-10 test runs per 

task

Predict one out of 36 rotations for pick too 

(unlike simulation)



CLIPort: Video
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http://www.youtube.com/watch?v=UdzoagBgWTA&t=68


CLIPort: Results (real robot)

25[Source: Shridhar et al. (2021), CLIPort]
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CLIPort: Limitations

Need for balanced datasets (exploiting biases)

Sensitive to hand-eye calib (due to action space being 2D+rotation)

Limited to SE(2) poses for pick/place

Limited to simpler object relations (‘on’, ‘in’)

Relies on expert to detect task completion (& stop)



Conclusion

Semantic priors (e.g. CLIP) help data-efficient generalization

No symbolic states

No “objectness” assumptions (pose, segmentation, etc.)

Works on a real robot
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Questions
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Appendix A
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CLIP hyperparameters

[Source: Radford et al. (2021), CLIP]



Appendix B
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CLIP results

[Source: Radford et al. (2021), CLIP]



Appendix C

31[Source: Shridhar et al. (2021), CLIPort]



Appendix D
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[Source: Shridhar et al. (2021), CLIPort]CLIPort results



Appendix E
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[Source: Shridhar et al. (2021), CLIPort]CLIPort ablations


