CoRL 2021

CLIPort: What and Where Pathways for Robotic Manipulation

Mohit Shridhar¹, Lucas Manuelli², Dieter Fox^{1, 2}

¹University of Washington, ²NVIDIA

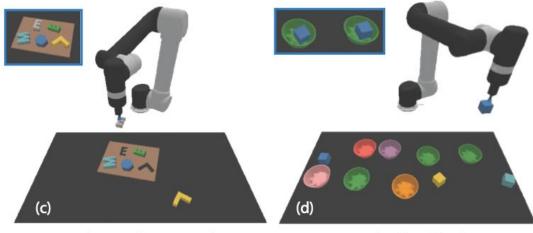
Presented by Imran Ibrahimli

Contents

Motivation & Scope

What pathway: CLIP

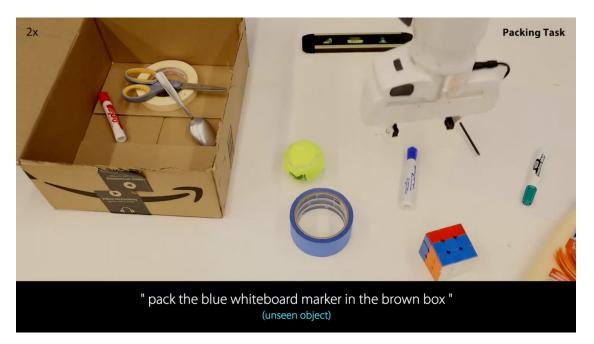
Where pathway: Transporter Nets


CLIPort

Experiments & Results

Future work

Motivation


Language-conditioned learning for precise robotic manipulation from demonstrations

"put the gray letter E in the left letter E shape hole" "put the blue blocks in a green bowl"

Motivation

Real-world tasks such as packing, palletizing, stacking

Contributions

Grounding semantic concepts using CLIP

End-to-end with no object models, poses, segmentation

Single multi-task model

Data efficiency (few demonstrations required)

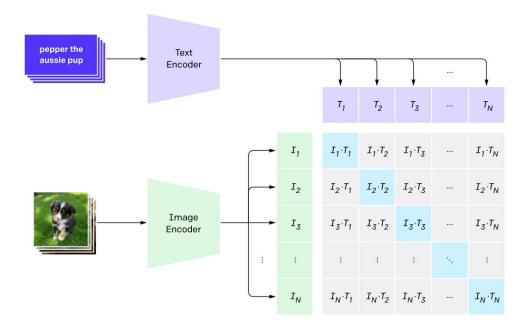
Scope

Work is NOT attempting to solve:

- Handling novel object types
- Arbitrary (out of distribution) language instructions

for which no demonstrations were given

Restricted to 2D pick/place pose prediction

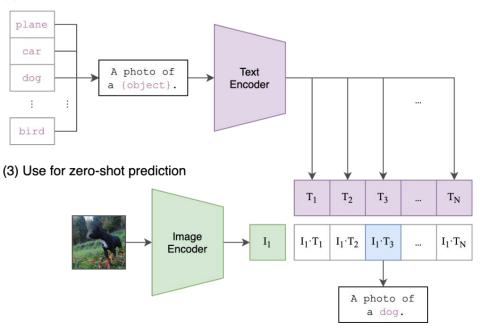


Two-stream architecture:

What (semantic) pathway: CLIP

Where (spatial) pathway: Transporter Net

Learns visual concepts from natural language supervision



[Source: Radford et al. (2021), CLIP]

Trained on image-caption pairs scraped from the internet

Can be used for zero-shot classification & other tasks

(2) Create dataset classifier from label text

[Source: Radford et al. (2021), CLIP]

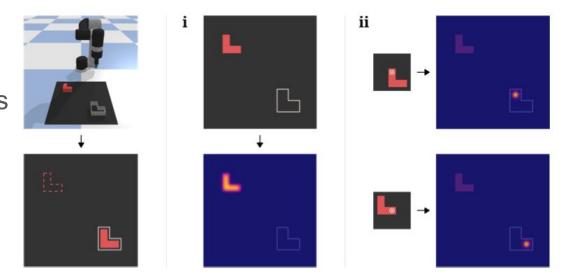
Vision encoder: ResNet or Vision Transformer

Text encoder: CBOW or Text Transformer

Contrastive training: given an image, predict which one of these ~32K text snippets was paired with it

Pros:

Leverages massive amounts of weakly-labeled data


Zero-shot generalization to different tasks

Cons:

Bad with abstract / systematic / fine-grained tasks (e.g. counting, classifying car model)

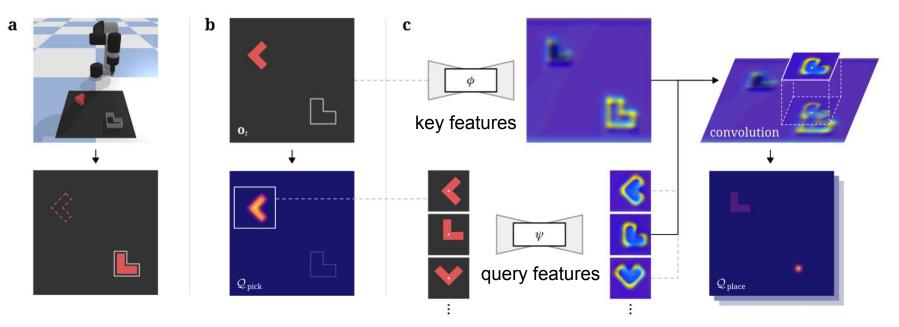
Need to provide choices / classes (unlike image captioning)

Rearrange deep features to infer spatial displacements from visual input

Figure 2. Simple planar pick-and-place task where (i) there is a distribution of successful pick poses, and (ii) for each successful pick pose, there is a corresponding distribution of successful place poses.

[Source: Zeng et al. (2020), Transporter Networks]

Problem decomposed into


- Picking $\mathcal{T}_{\text{pick}} = \underset{(u,v)}{\operatorname{argmax}} \mathcal{Q}_{\text{pick}}((u,v)|\mathbf{o}_t)$
- Pick-conditioned placing $\mathcal{T}_{\text{place}} = \underset{\{\tau_i\}}{\operatorname{argmax}} \mathcal{Q}_{\text{place}}(\tau_i | \mathbf{o}_t, \mathcal{T}_{\text{pick}})$

Where o_t is the observation (RGB-D image) and $\mathcal{T}_{pick}, \mathcal{T}_{place} \in SE(2)$

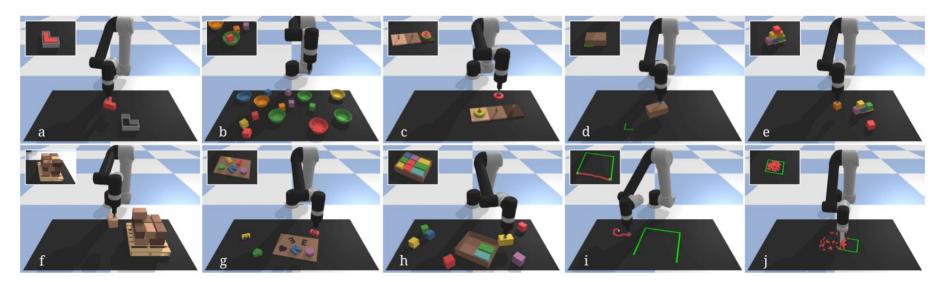
Pick model is an encoder-decoder 43-layer ResNet

Place model has the same architecture as pick model, but outputs 2 feature maps (key & query)

Cross-entropy on pick and place one-hot encodings

[Source: Zeng et al. (2020), Transporter Networks]

Pros:


No object-centric representations

Generalization to unseen objects

Cons:

Sensitive to noise & camera-robot calibration

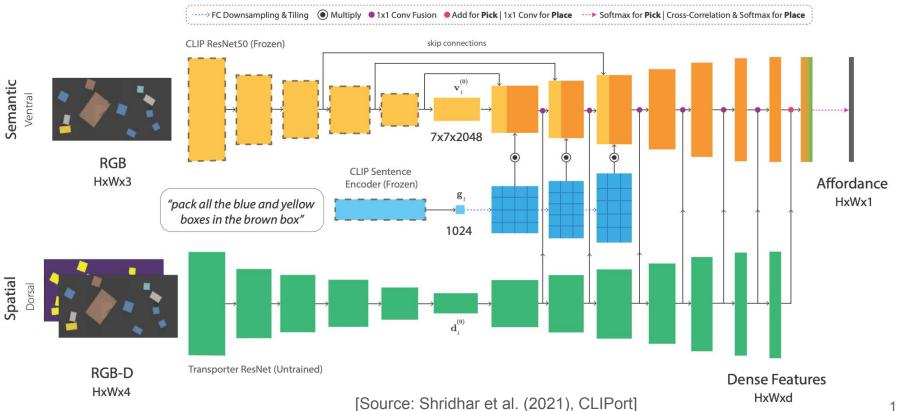

Restricted actions defined by 2D keypoints

Figure 6. **Tasks:** (row-major order) block-insertion, place-red-in-green, towers-of-hanoi, align-box-corner, stack-block-pyramid, palletizing-boxes, assembling-kits, packing-boxes, manipulating-rope, sweeping-piles. Goal states (not provided to learners) are shown in top left corner of each image.

[Source: Zeng et al. (2020), Transporter Networks]

CLIPort: Architecture

CLIPort: Training

Given: a set of expert demonstrations $D = \{\zeta_1, \zeta_2, \dots, \zeta_n\}$

 $\zeta = zeta$

consisting of discrete time input-action pairs

$$\zeta_i = \{(o_1, l_1, a_1), (o_2, l_2, a_2), \dots \}$$

o_t: observation, RGB-D image

I_t : language instruction

a_t : action =
$$(\mathcal{T}_{ extsf{pick}},\mathcal{T}_{ extsf{place}})$$
 such that $\mathcal{T}_{ extsf{pick}},\mathcal{T}_{ extsf{place}} \in \mathbf{SE}(2)$

CLIPort: Training

k is for rotations (k=36)

One-hot pixel encode Y_{pick} and Y_{place} (shape = H x W x k)

Cross entropy loss $\mathcal{L} = -\mathbb{E}_{Y_{pick}}[\log \mathcal{V}_{pick}] - \mathbb{E}_{Y_{place}}[\log \mathcal{V}_{place}]$

 $\mathcal{V}_{\text{pick}} = \operatorname{softmax}(\mathcal{Q}_{\text{pick}}((u, v) | \gamma_t))$ (u, v) = pixel-space coordinate

$$\mathcal{V}_{\text{place}} = \operatorname{softmax}(\mathcal{Q}_{\text{place}}((u', v', \omega') | \gamma_t, \mathcal{T}_{pick})) \qquad \mathcal{T}_{\text{pick}} = \operatorname{argmax}_{(u,v)} \mathcal{Q}_{\text{pick}}((u,v) | \gamma_t) \\ \text{action} \in SE(2) \\ \gamma_t = (\mathbf{o}_t, \mathbf{l}_t) \quad \begin{array}{c} \text{Observation \&} \\ \text{language} \end{array}$$

CLIPort: Prediction examples

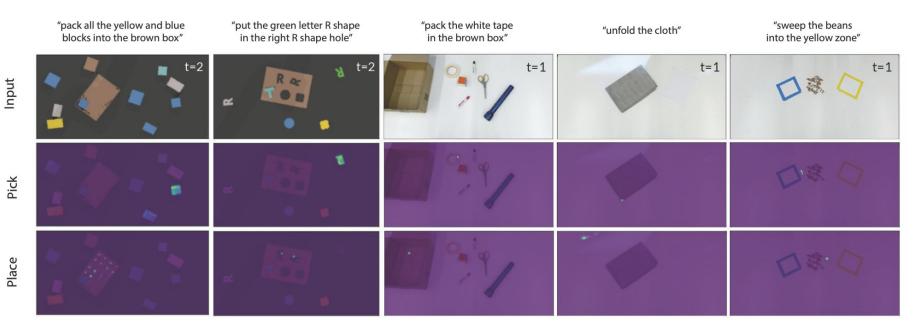
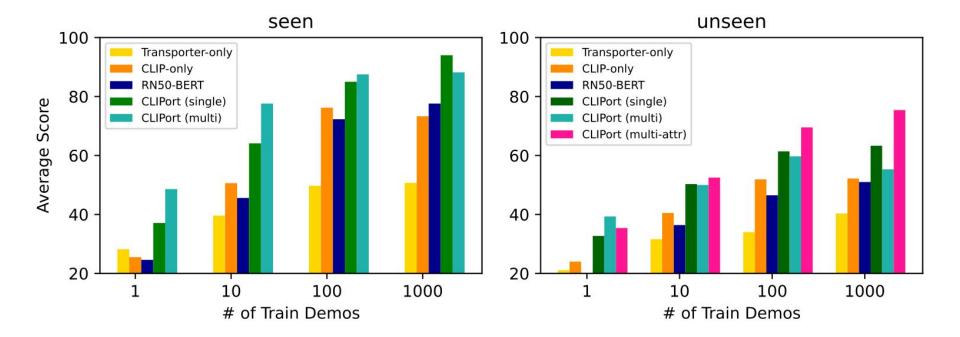


Figure 4. Affordance predictions from CLIPORT (multi) models in sim (left two) and real settings (right three). More examples in Appendix H.

CLIPort: Experiments in sim


UR5e with a suction gripper

RGB-D reconstructed from 3 cameras (640x480)

Ravens benchmark from PyBullet (extended by 10 language -conditioned tasks) with an **oracle**

Evaluation based on 0 to 100 score (partial credit)

CLIPort: Results (simulation)

CLIPort: Experiments on real robot

Franka Panda with parallel gripper

Kinect2 RGB-D Camera

5-10 demos for training, **5-10** test runs per task

Predict one out of **36** rotations for pick too (unlike simulation)

Figure 8. Real-Robot Experimental Setup.

CLIPort: Video

CLIPort: Results (real robot)

Task	# Train (Samples)	# Test	Succ. %
Stack Blocks	5 (13)	10	70.0
Put Blocks in Bowl	5 (10)	10	65.0
Pack Objects	10 (31)	10	60.0
Move Rook	4 (29)	10	70.0
Fold Cloth	9 (9)	10	57.0
Read Text	2 (26)	10	55.0
Loop Rope	4 (12)	10	60.0
Sweep Beans	5 (23)	5	60.6
Pick Cherries	4 (26)	5	75.0

Table 2. Success rates (%) of a multi-task model trained an evaluated 9 real-world tasks (see Figure 1). Samples indicate total image-action pairs, e.g 1 in Figure 9.

CLIPort: Limitations

Need for balanced datasets (exploiting biases)

Sensitive to hand-eye calib (due to action space being 2D+rotation)

Limited to SE(2) poses for pick/place

Limited to simpler object relations ('on', 'in')

Relies on expert to detect task completion (& stop)

Semantic priors (e.g. CLIP) help data-efficient generalization

No symbolic states

No "objectness" assumptions (pose, segmentation, etc.)

Works on a real robot

Questions

Appendix A

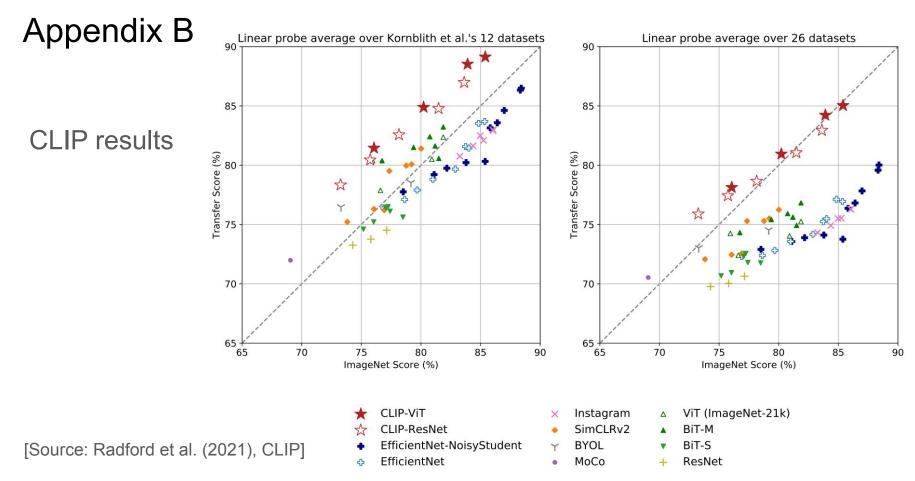
Learning Transferable Visual Models From Natural Language Supervision

F. Model Hyperparameters

Hyperparameter	Value
Batch size	32768
Vocabulary size	49408
Training epochs	32
Maximum temperature	100.0
Weight decay	0.2
Warm-up iterations	2000
Adam β_1	0.9
Adam β_2	0.999 (ResNet), 0.98 (ViT)
Adam ϵ	10^{-8} (ResNet), 10^{-6} (ViT)

Table 18. Common CLIP hyperparameters

	Learning	Embedding	Input	ResNet		Text Transformer					
Model	rate	dimension	resolution	blocks	width	layers	width	h heads			
RN50	5×10^{-4}	1024	224	(3, 4, 6, 3)	2048	12	512	8			
RN101	$5 imes 10^{-4}$	512	224	(3, 4, 23, 3)	2048	12	512	8			
RN50x4	5×10^{-4}	640	288	(4, 6, 10, 6)	2560	12	640	10			
RN50x16	4×10^{-4}	768	384	(6, 8, 18, 8)	3072	12	768	12			
RN50x64	$3.6 imes 10^{-4}$	1024	448	(3, 15, 36, 10)	4096	12	1024	16			


Table 19. CLIP-ResNet hyperparameters

	Learning	Embedding	Input	Visio	n Transfo	ormer	Text Transformer						
Model	rate	dimension	resolution	layers	width	heads	layers	width	heads				
ViT-B/32	5×10^{-4}	512	224	12	768	12	12	512	8				
ViT-B/16	5×10^{-4}	512	224	12	768	12	12	512	8				
ViT-L/14	4×10^{-4}	768	224	24	1024	16	12	768	12				
ViT-L/14-336px	2×10^{-5}	768	336	24	1024	16	12	768	12				

[Source: Radford et al. (2021), CLIP]

CLIP hyperparameters

Table 20. CLIP-ViT hyperparameters

Appendix C

Task	precise placing	multimodal placing	multi-step sequencing		unseen colors		language instruction
put-blocks-in-bowls-seen-colors*	×	1	×	1	×	×	goal
put-blocks-in-bowls-unseen-colors*	×	1	×	1	1	×	goal
assembling-kits-seq-seen-colors	1	1	1	1	×	1	step
assembling-kits-seq-unseen-colors	1	1	1	1	1	1	step
packing-unseen-shapes	×	1	×	1	1	1	goal
stack-block-pyramid-seq-seen-colors	1	1	1	1	×	×	step
stack-block-pyramid-seq-unseen-colors	1	1	1	1	1	×	step
towers-of-hanoi-seq-seen-colors	1	1	~	1	×	×	step
towers-of-hanoi-seq-unseen-colors	1	1	1	1	1	×	step
packing-box-pairs-seen-colors ^{*§}	1	1	1	1	×	1	goal
packing-box-pairs-unseen-colors*§	1	1	1	1	1	1	goal
packing-seen-google-objects-seq [§]	×	1	1	1	×	×	step
packing-unseen-google-objects-seq§	×	1	1	1	1	1	step
packing-seen-google-objects-group*§	×	1	×	1	×	×	goal
packing-unseen-google-objects-group*§	×	1	×	1	1	1	goal
align-rope* [†]	1	1	1	1	×	×	goal
separating-piles-seen-colors* [†]	1	1	1	1	×	×	goal
separating-piles-unseen-colors* [†]	1	1	1	1	1	×	goal

§ tasks that are commonly found in industry.

* tasks that have more than one correct sequence of actions.

[†] tasks that require manipulating deformable objects and granular media.

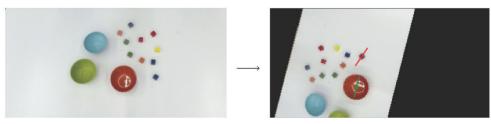


Figure 9. Data Augmentation: SE(2) transform applied to RGB-D input. The left image shows the original input, and the right image shows the transformed input along with expert T_{pick} (red) and T_{place} (green) actions.

Appendix D CLIPort results

	packing-box-pairs seen-colors					packing-box-pairs unseen-colors				king- <mark>s</mark> objec	een-go cts-seq	-	packing- <mark>unseen</mark> -google objects-seq				packing- <mark>seen</mark> -google objects-group				packing-unseen-google objects-group			
Method	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000
Transporter-only [2]	44.2	55.2	54.2	52.4	34.6	48.7	47.2	54.1	26.2	39.7	45.4	46.3	19.9	29.8	28.7	37.3	60.0	54.3	61.5	59.9	46.2	54.7	49.8	52.0
CLIP-only	38.6	69.7	88.5	87.1	33.0	65.5	68.8	61.2	29.1	67.9	89.3	95.8	37.1	49.4	60.4	57.8	52.5	62.0	89.6	92.7	43.4	65.9	73.1	70.0
RN50-BERT	36.2	64.0	94.7	90.3	31.4	52.7	65.6	72.1	32.9	48.4	87.9	94.0	29.3	48.5	48.3	56.1	46.4	52.9	76.5	86.4	43.2	52.0	66.3	73.7
CLIPORT (single)	51.6	82.9	92.7	98.2	45.6	65.3	68.6	71.5	14.8	59.5	86.8	96.2	27.2	50.0	65.5	71.9	52.7	67.0	84.1	94.0	61.5	66.2	78.4	81.5
CLIPORT (multi)	66.8	88.6	94.1	96.6	59.0	69.7	76.2	71.4	41.6	78.4	85.0	84.4	40.7	51.1	65.8	70.3	71.3	84.6	89.6	88.3	68.4	69.6	78.4	80.3
CLIPORT (multi-attr)	-	-	<u> </u>	-	46.2	72.0	86.2	80.3	-	-	-	22_	35.4	45.1	78.9	87.4	-	-	-	-	48.6	69.3	84.8	89.1
			ck-pyr n-colo			k-bloc q- <mark>unse</mark>			S	eparat seen-	ing-pi colors				ing-pi <mark>n</mark> -colo				of-har n-colo			owers- q- <mark>unse</mark>		
	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000
Transporter-only [2]	4.5	2.3	5.2	4.5	3.0	4.0	2.3	5.8	42.7	52.3	42.0	48.4	41.2	49.2	44.7	52.3	25.4	67.9	98.0	99.9	24.3	44.6	71.7	80.7
CLIP-only	6.3	28.7	55.7	54.8	2.0	12.2	18.3	19.5	43.5	55.0	84.9	90.2	59.9	49.6	73.0	71.0	9.4	52.6	88.6	45.3	24.7	47.0	67.0	58.0
RN50-BERT	5.3	35.0	89.0	97.5	6.2	12.2	21.5	30.7	31.8	47.8	46.5	46.5	33.4	44.4	41.3	44.9	28.0	66.1	91.3	92.1	17.4	75.1	85.3	89.3
CLIPORT (single)	28.3	64.7	93.3	98.8	13.7	24.3	31.2	41.3	54.5	59.5	93.1	98.0	47.2	51.0	76.6	75.2	59.4	92.9	97.4	100	56.1	89.7	95.9	99.4
CLIPORT (multi)	33.5	75.3	96.8	96.5	23.3	26.8	31.7	22.2	48.9	72.4	90.3	89.0	56.6	62.6	64.9	62.8	61.6	96.3	98.7	98.1	60.1	65.6	76.7	68.7
CLIPORT (multi-attr)	-	-	_	-	15.5	51.5	59.3	79.8	-	-	-	_	49.9	51.8	48.2	59.8	-	-	-	-	56.7	78.0	88.3	96.9
	align-rope pa			pack	packing-unseen-shapes			ass	emblin seen-	ng-kits colors				ng-kits <mark>n</mark> -colo		put		s-in-b colors			-block unseer			
	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000
Transporter-only [2]	6.9	30.6	33.1	51.5	16.0	20.0	22.0	22.0	5.8	11.6	28.6	29.6	7.8	17.6	25.6	28.4	16.8	33.3	62.7	64.7	11.7	17.2	14.8	18.7
CLIP-only	13.4	48.7	70.4	70.7	13.0	28.0	44.0	50.0	0.8	9.2	19.8	23.0	2.0	4.6	10.8	19.8	23.5	60.2	93.5	97.7	11.2	34.2	33.2	44.5
RN50-BERT	3.1	25.0	63.8	57.1	19.0	25.0	32.0	44.0	2.2	5.6	11.6	21.8	1.6	6.4	10.4	18.4	13.8	44.5	81.2	91.8	16.2	23.0	30.3	23.8
CLIPORT (single)	20.1	77.4	85.6	95.4	21.0	26.0	40.0	37.0	12.2	17.8	47.0	66.6	16.2	18.0	35.4	34.8	23.5	68.3	92.5	100	18.0	35.3	37.3	25.0
CLIPORT (multi)	19.6	49.3	82.4	74.9	25.0	35.0	37.0	31.0	11.4	34.8	46.2	52.4	7.8	21.6	29.0	25.4	54.0	90.2	99.5	100	32.0	48.8	55.3	45.8
CLIPORT (multi-attr)	-	-	- // <u></u>	-	-	_	-	_	-	_	_	102	7.6	10.4	43.8	34.6	-	-	-	-	23.0	41.8	66.5	75.7

Appendix E CLIPor

		k-bloc eq-see				k-bloc q-unse			pacl	king-s obje	een-go ct-seq		packing-unseen-google object-seq			
Method	1	10	100	1000	1	10	100	1000	1	10	100	1000	1	10	100	1000
One-Stream Transporter-only One-Stream CLIP-only	4.5 6.3	2.3 28.7	5.2 55.7	4.5 54.8	3.0 2.0	4.0 12.2	2.3 18.3	5.8 19.5	26.2 52.5	0	45.4 89.6	46.3 92.7	19.9 43.4	29.8 65.9	-0.7	37.3 70.0
One-Stream Language Transporter One-Stream Image-Goal Transporter	0.0 1.8	0.0 1.3	0.0 7.0	0.0 6.8	0.0 2.5	0.0 4.7	0.0 4.2	0.0 4.8	0.0 64.5	0.0 67.0	0.0 81.8	0.2 85.4	0.1 47.7	0.1 62.8	0.0 71.0	0.0 83.3
Two-Stream CLIP-Transporter w/o skips Two-Stream Untrained-Sem-Transporter Two-Stream RN50-BERT-Transporter Two-Stream CLIP-Transporter (ours)	3.0 5.3	4.3 12.7 35.0 64.7	3.8 61.5 89.0 93.3	3.3 51.2 97.5 98.8	4.2 1.0 6.2 13.7	5.2 6.8 12.2 24.3	3.2 17.2 21.5 31.2	2.5 15.7 30.7 41.3	22.9 28.8 32.9 14.8	40.5 48.4		79.7 94.0	24.4 27.2 29.3 27.2	34.7 48.5	33.0 48.3	38.3 34.8 56.1 71.9

Table 5. Ablations and Baselines. Evaluation scores (mean %) for stack-block-pyramid-seq and packing-google-objects-seq tasks from 100 evaluation runs. Stacking block pyramids involves both semantic and precise spatial reasoning, whereas packing objects mostly involves semantic grounding without requiring any precise placements.