

Florian Vahl

08.12.2022

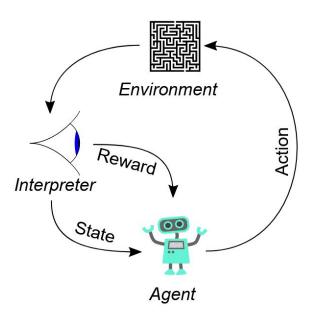
Reinforcement learning with Dreamer / Dreaming V1 / V2

Outline

- Fundamentals
 - Markov Decision Process
 - Reinforcement Learning
- Approaches
 - Dreamer V1
 - Dreamer V2
 - Dreaming V1
 - Dreaming V2
- Results
- Discussion

Fundamentals

Markov Decision Process



Markov Decision Process

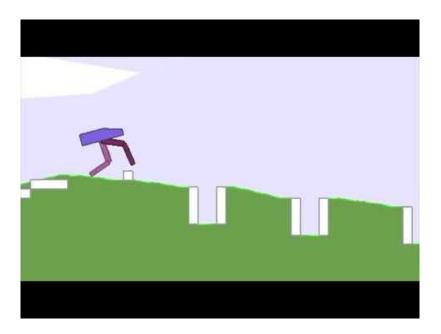
An MDP is a tuple $\langle S, A, P, R \rangle$ where:

- S is a set of states.
- A is a set of actions.
- $P: S \times A \times S \rightarrow [0, 1]$ is the state transition probability function.
- $R: S \times A \to R$ is the reward function.

Reinforcement Learning

- Type of machine learning that involves agents learning based on a reward
- No ground truth labels
- Optimizes policy to maximize the reward signal
- Applied in many domains including robotic control and game playing
- Typically formulated using the Markov Decision Process

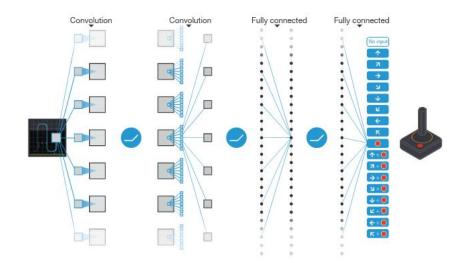
Reinforcement Learning - Environments



https://www.youtube.com/watch?v=SyonPJc8hMw

Reinforcement Learning - Environments

Reinforcement Learning - Deep Q-Learning (Example)



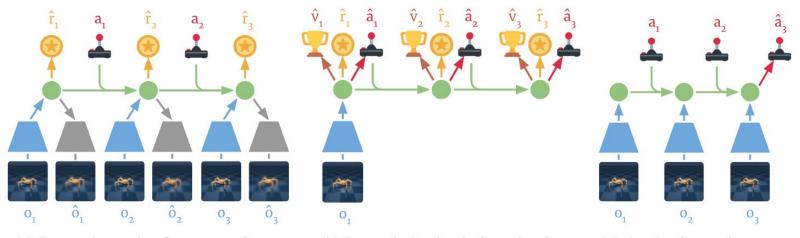
Human-level control through deep reinforcement learning

Approaches

Dreamer V1

- Paper: "Dream to Control: Learning Behaviors by Latent Imagination" by Hafner et al. from Google Brain at ICLR 2020
- Model based reinforcement learning algorithm
- Learns world model
- Solves long-horizon tasks purely from image base observations
- Imagines novel trajectories in the world models latent space
- Policy is trained using the imagined trajectories

Dreamer V1 – Architecture



(a) Learn dynamics from experience

(b) Learn behavior in imagination

(c) Act in the environment

Dream to Control: Learning Behaviors by Latent Imagination (2020)

Dreamer V1 – World Model

- Representation model
- Observation model
- Reward model

Ο

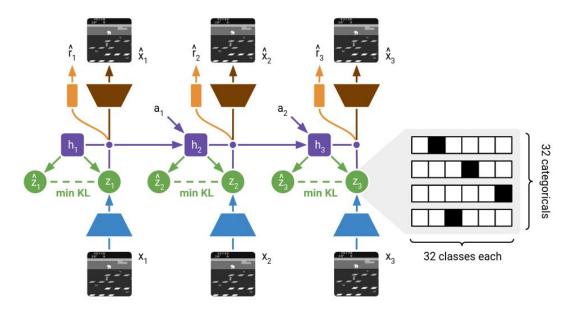
- Transition model
 - Predicts next latent state
 - Outputs tanh-transformed Gaussian distribution
- Frozen while learning behaviors

$$p_{ heta}(s_t \mid s_{t-1}, a_{t-1}, o_t) \ q_{ heta}(o_t \mid s_t) \ q_{ heta}(r_t \mid s_t) \ q_{ heta}(s_t \mid s_{t-1}, a_{t-1}).$$

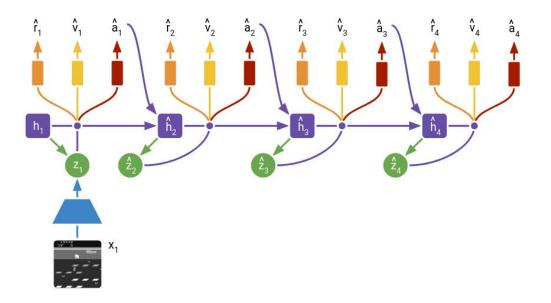
Dreamer V2

- Paper: "Mastering Atari with Discrete World Models" by Hafner et al. from Google Brain at ICLR 2021
- Similar to Dreamer V1
- Transition model uses categorical variables instead of Gaussians
- Performed well in image based Atari tasks

Dreamer V2 – Architecture



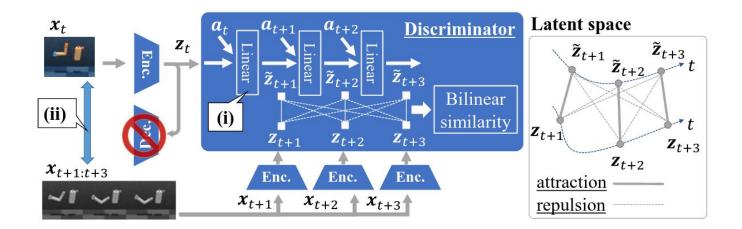
Dreamer V2 – Latent Imagination



Dreaming V1

- Paper: "Dreaming: Model-based Reinforcement Learning by Latent Imagination without Reconstruction" by Okada et al. from Panasonic Corporation in ICRA 2021
- Similar to Dreamer V1
- World model is trained via contrastive learning
- No generative decoder / observation model
- Tries to avoid object vanishing

Dreaming V1 – Architecture

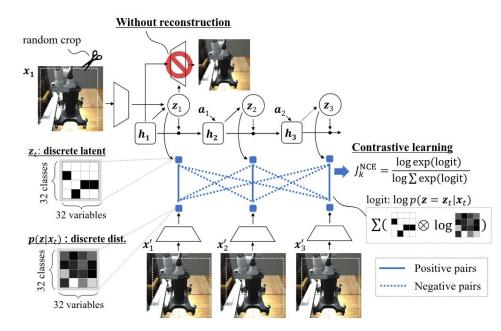


Dreaming: Model-based Reinforcement Learning by Latent Imagination without Reconstruction (2022)

Dreaming V2

- Paper: "DreamingV2: Reinforcement Learning with Discrete World Models without Reconstruction" by Okada et al. from Panasonic Corporation on arXiv (2022)
- Applies the concept concepts introduced in Dreamer V2 to Dreaming V1
- Also decoder free

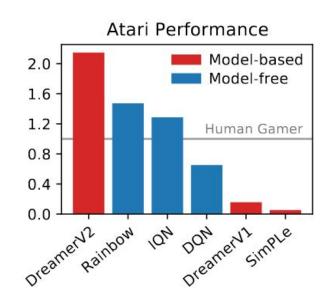
Dreaming V2 – Architecture

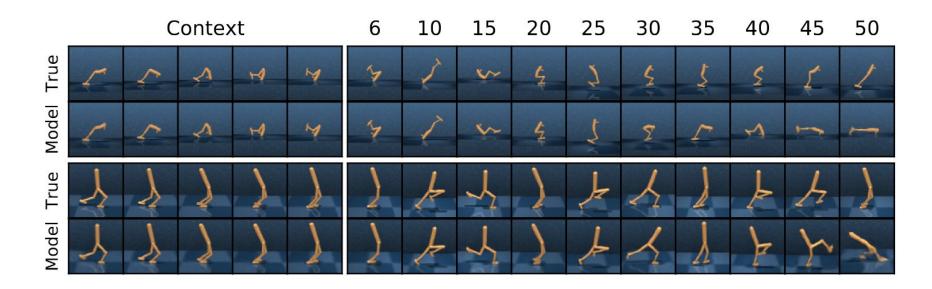


DreamingV2: Reinforcement Learning with Discrete World Models without Reconstruction (2022)

	DreamingV2 (ours)	DreamerV2 [6]	Dreaming [7]	Dreamer [5]
Discrete latent	✓	✓		
Reconstruction free	√		\checkmark	
(A) 3D Rotot-arm t	tasks			
UR5-reach	776±194	704 ± 222	752 ± 1178	701±223
Reach-duplo	199 ±43	149 ± 62	145 ± 61	5 ± 11
Lift	327±150	165 ± 126	174 ± 107	134 ± 46
Door	383±143	190 ± 126	<u>319</u> ±173	154 ± 32
PegInHole	436±26	<u>376</u> ±59	353 ± 50	354±47
(B) 2D Manipulation	n tasks			
Reacher-hard	598±447	175±340	743 ±346	247±392
Finger-turn-hard	484 ± 434	600±417	858±210	533±426
Reacher-easy	<u>924</u> ±210	923±215	947±100	658±429
Finger-turn-easy	434±469	498±469	<u>842</u> ±286	665 ± 430
(C) Difficult pole-sw	ingup tasks			
Acrobot-swingup	470±129	309±131	359±111	382 ± 147
Cartpole-two-poles	<u>308</u> ±55	248 ± 103	<u>273</u> ±53	256±65
(D) 3D locomotion r	obot tasks			
Quadruped-walk	492±127	350±89	<u>379</u> ±189	242 ± 120
Quadruped-run	<u>385</u> ±91	$\underline{352}\pm68$	339±128	269 ± 114
(E) 2D locomotion ta	asks			
Cheetah-run	768±24	<u>811</u> ±75	542±132	<u>776</u> ±120
Walker-walk	857±115	951±28	518±76	906±70

DreamingV2: Reinforcement Learning with Discrete World Models without Reconstruction (2022)

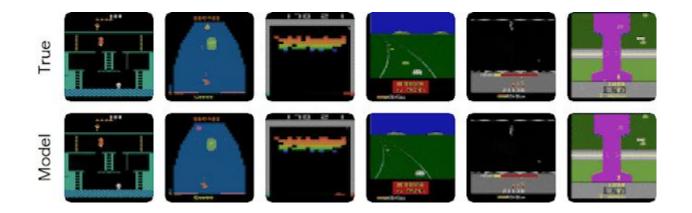




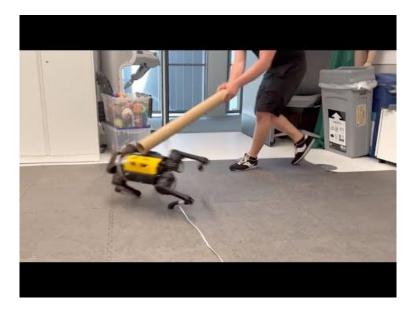
Dream to Control: Learning Behaviors by Latent Imagination (2020)

Results – Video

Results – Video



Results – Real World Reinforcement Leaning



DayDreamer: World Models for Physical Robot Learning (2022)

Discussion

- Sampling efficiency can be improved using latent imagination
- Object vanishing is still a problem even in Dreaming
- Atari performance only for "single GPU" setups
- Categorical stochastic representations improve performance
- Good fit for situations where exploration is costly (e.g. real-world reinforcement learning)

Questions?