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Paper Statistics
• published in year 2018
• 2nd Conference on Robot Learning (CoRL 2018), Zurich,

Switzerland.
• people associated with NVIDIA
• around 500 citations

Figure: Papers that cited DOPE in blue-underlaid. [1]
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2-Dimensional Object Detection

Figure: 2-D Object Annotation [2]

• rectangular bounding box shape
• created using two coordinates on the image
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6 DOF / 3-D Object Detection

(a) 6-Degree of Freedom (b) 3-Dimensional Object Annotation
[2]

• three dimensions (x, y, z axes); plus three rotational axes (roll,
pitch, yaw) (a)

• 8 vertices needed (b)
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Sum up 2-D to 3-D

Figure: 2-D to 3-D [2].
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YCB Objects

• Yale-CMU-Berkeley (YCB)
• daily life objects

Figure: YCB objects [3].
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Motivation

Figure: [4]

• find meshes in a coordinate system
• find pose (position and orientation) relative to the camera
• implicit representations of the above
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Reality Gap

• lighting conditions
• noise (e.g. camera)
• richness of images (e.g.

background textures)
• performance issues on real data

Figure: Simulated vs. Real
Data [5].
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Contributions

• propose photorealistic data for training
• combined with Domain Randomization
• propose DOPE (Deep Object Pose Estimation) algorithm
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Domain Randomization

Domain Randomization

• existing method dealing with
reality gap

• random camera positions
• lighting conditions
• objects positions
• non-realistic textures
• distractor objects Figure: Domain

Randomization. Train and
Test data. [6].
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Photorealistic Data

Photorealistic Data

• placing the foreground objects in
3D background scenes with
physical constraints

• standard backgrounds from
UnrealEngine4

• YCB Objects
• allowed to fall and to collide

within the scene
• changing camera position while

falling
• Falling Things (FAT) data set

Figure: Photorealistic Data
[4].
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Deep Object Pose Estimation (DOPE)

DOPE Framework

Figure: DOPE Network Architecture [7].

• Image features computed VGG-19 network
• build belief maps (8 vertices + 1 centroid)
• build 8 vector fields directing to centroid of an object
• process is done in multiple stages (field of reception)
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Deep Object Pose Estimation (DOPE)

Perspective-n-Point Extraction

• find local peaks in the belief maps
above a threshold

• evaluate vector field direction and
assign to closest centroid (angular
threshold)

• estimate 6-DOF using a PnP
algorithm (Rotation and
Translation matrix)

Figure: PnP-Problem [8].
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Training

• 60k domain-randomized image frames mixed with 60k
photorealistic image frames

• 60k DR (class specific) + 60k photorealistic
• calculate L2 for belief maps and vector fields after each stage
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Average Distance Metric (ADD)

• ADD and ADD matching score

ADD = 1
|M|

∑
x∈M

||(Rx + T) − (R̃x + T̃)|| (1)

ADD-S = 1
|M|

∑
x1∈M

minx2∈M ||(Rx1 + T) − (R̃x2 + T̃)|| (2)

• R and T are ground truth rotation and translation matrices
• R̃ and T̃ are estimated rotation and translation matrices
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Results
• authors limited to cracker box, sugar box, tomato soup can,

mustard bottle and potted meat
• reasons: graspability and texture
• threshold 2cm

Figure: Accuracy results cracker box, sugar box, tomato soup can. [4].
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Live Demo

Figure: Live demo video [9].
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Discussion

• not provided complete results
• limited to certain items (best results)
• no result table
• grasp items from different angles
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State-of-the-Art 6-DOF Object Detection

Self-Occlusion Pose Intuition

Figure: Basic Self-Occlusion-Pose [10].
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State-of-the-Art 6-DOF Object Detection

Figure: Results on YCB-V [10]

• ADD(-S) percentage of transformed model points whose
deviation from ground truth lies below 10% of the object’s
diameter (0.1d).

• For symmetric objects, ADD(-S) measures the deviation to the
closet model point [10]

• Area Under the Curve accuracy when using different thresholds
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Conclusion

• YCB objects is a robotics data set widely used
• domain randomization is good
• but photorealistic data improves the results a lot
• DOPE is a model for predicting 6-DOF poses
• SO-Pose state-of-the-art
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End Frame
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Appendix

Distractors

number and types of distractors, selected from a set of 3D models
(cones, pyramids, spheres, cylinders, partial toroids, arrows, etc.)
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Appendix

Complete Results Accuracy curves

Figure: [4]
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Appendix

True Belief Maps, True Vector Fields

• "The ground truth belief maps were generated by placing 2D
Gaussians at the vertex locations with SIGMA = 2 pixels"

• "The ground truth vector fields were generated by setting pixels
to the normalized x- and y-components of the vector pointing
toward the object’s centroid " [4]

• => Assume Generate True locations on 400x400x8 and
downsample to 50x50x8

• assume W=400, H=400. Vector from one vertex to centroid
(x=100, y=200). Normalized:(0.25,0.5)
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Appendix

Results visualized

Figure: Pose estimation of YCB objects. Different lighting conditions. [4].
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Appendix

Live DOPE at TAMS

Figure: Provided by Michael Görner. [11]
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Appendix

Dope Pick and Place

Figure: Pick and place [4].
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Appendix

DOPE++

Figure: DOPE++ [12].
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Appendix

SO-Pose Architecture

Figure: Self-Occlusion Pose Architecture [10].
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Appendix

Planar Non-planar

Figure: src knowledge.autodesk.com
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