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Introduction
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Supersizing Self-Supervision (2015):



Historical classification

• Published in 2015 
• Has been cited 1048 times
• Many scientists referred to this paper and developed ideas further
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How do we predict grasp locations for an object?
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https://www.youtube.com/watch?v=oSqHc0nLkm8



How do we predict grasp locations for an object?
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Modelling the object?
• Does not scale
• Ignores density
• Ignores mass distribution

Annotating grasp positions on the mesh?
• Main development after release of the paper
• Easy for particular gripper

Connect the mesh with the real-world
object using camera image?
• Different but active research field

Machine learning?
• Exhaustive human labelling impossible
• Biased by semantics

Train the robot in simulation?
• Different research field



Self-supervised grasping
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• First approach to build a self-supervised setup and collect huge amount of data to train a neuronal network 
• Trial and error

Goal
• Large dataset for the task of grasping
• Novel formulation of convolutional neuronal networks (CNN)
• Multi-stage learning approach

Pinto, L. and Gupta, A. (2015) 
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Approach
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Robot grasping system:

• Baxter robot (both arms are used in parallel)
• ROS as development system
• 2 finger gripper
• Gripper force sensor
• Kinect V2 for table-top 
• Small camera for end effector

Pinto, L. and Gupta, A. (2015) 
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• Random grasp is executed and stored as failure or success. This is recognized by the 
gripper´s force sensor 

• Images of table-top and end effector, robot arm trajectories and gripping history are 
recorded to disk 

Trial and error experiments:

Pinto, L. and Gupta, A. (2015) 
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• Finding a successful grasp configuration of an object I using convolutional neuronal 
networks (CNN). 

• AlexNet CNN model pre-trained on ImageNet is used
• Input to CNN

• Image patch 1.5 times the gripper fingertips
• Output

• Gripper orientation

Problem formulation:

Pinto, L. and Gupta, A. (2015) 
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• Data preparation
• Network design

• AlexNet pretrained on ImageNet 

• Loss function

Training approach:

Pinto, L. and Gupta, A. (2015) 
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Grasp selection:
• The robot now uses this trained network as the default for gripping.
• Seen and novel objects are used to enrich the model and avoids overfitting
• Procedure staged learning:

1. 800 randomly sampled patches are evaluated by the trained network
2. 800 x 18 grasp-ability prior matrix is generated
3. Grasp execution is decided by importance sampling

Staged learning:

Pinto, L. and Gupta, A. (2015) 
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Data Aggregation:
CNN training iteration: k
Random grasp dataset for training: D
The CNN uses the result from the last network train iteration k-1 to finetune the network using the 
dataset D.
Iteration 0 is simply trained on D

• Iteration 0: Learning rate 0.01 and 20 epochs
• Iteration > 0: Learning rate 0.001 and 5 epochs

Staged learning:
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Result
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• 150 Objects with varying graspability
• Cluttered table
• 50K grasp experience interactions

Training dataset:

Pinto, L. and Gupta, A. (2015) 

Pinto, L. and Gupta, A. (2015) 
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• Test on objects not seen in the training
• 3000 physical robot interactions on 15 new objects in multi poses
• Binary evaluation: grasped or not grasped
• Accuracy of 79.5% on this test set

Testing and evaluation setting:
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Comparison with baselines:

Pinto, L. and Gupta, A. (2015) 
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• Effects of data
• More data helps to increase accuracy

• Effects of pretraining
• Increase accuracy from 64.6% to 76.9%

• Effects of multi-staged learning
• Increase accuracy from 76.9% to 79.5%

• Effects of data aggregation
• Increase accuracy from 76.9% to 72.3%

Ablative analysis

Pinto, L. and Gupta, A. (2015) 
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• Re-ranking grasps
• Top 10 grasps on an object are identified
• Neighbourhood analysis for every grasp P:

• sample 10 patches in the neighbourhood of P
• Get the best angle score of every patch and calculate the average angle score of all 10 

patches
• the calculated average is the new angle score of P

• Re-rank the Top 10 grasps according to the new angle scores
• P with the highest angle score after the neigbourhood analysis is executed

Robot testing results

Pinto, L. and Gupta, A. (2015) 
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Conclusion
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• First approach to build a self-supervised setup and collect huge amount of 
data

• Parallel execution approach accelerates data collection 
• Pretraining, multi-stage learning and data aggregation increase the 

accuracy 
• Reranking grasps minimizes errors

Conclusion
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What came next?
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Learning hand-eye coordination for robotic grasping with deep learning and 
large-scale data collection (Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen 
D, 2016) 

https://www.youtube.com/watch?v=V05SuCSRAtg
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Learning hand-eye coordination for robotic grasping with deep learning and 
large-scale data collection (Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen 
D, 2016) 

Data collection:
• Data collection with 14 robotic manipulators 
• 800.000 grasps attempts

Complexity:
• Instead of predicting a grasp angle (parameter) the manipulators learn an actual policy which 

results in real-time control of the gripper using a camera
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Questions?

Thank you for your attention

https://www.youtube.com/watch?v=UlUqTaYNER8&feature=emb_title


