

MIN Faculty Department of Informatics

TossingBot

Berk Güngör

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

24. November 2022

- Introduction
- Throwing
- Language Grounding
- Model
- Visual Feature Extraction
- Evaluation

Motivation

Motivation

- Use of human robot interaction in academia and industry.
- Learning to grasp arbitrary objects.
- Relating grasping and throwing activities.
- Increasing the maximum reach range of robots.

Introduction

Notivation

- TossingBot learns to grasp arbitrary objects from an unstructured bin and to throw them into target boxes.
- Throw it and increase the capabilities of manipulator.
- Joint learning of grasping and throwing policies with a deep neural network.
- Residual learning of throw release velocities.

► Can robots toss ?

Related Works

Motivation

- Many previous systems built for throwing, rely on approximating dynamics based on frictional rigid body mechanics.
- ► Had some assumptions on physical properties.
- Observed limited throwing accuracy(40%).

- Learning Robotic Throwing
 - Pre-throwing conditions
 - Varying dynamics

Model

Throwing network outputs a dense prediction of residual velocity δ.

What Does TossingBot Learn ?

Motivation

oduction

Mode

Constraints

Training

ion C

- pixel-wise deep features
- relying more on gemoetric cues
- physical properties of objects

Perception Module: Learning Visual Representations

Motivation

tion Th

Model

Constraints

Trainir

Evalua

- Input is an RGB-D heightmap image of workspace
- Get data from fixed camera and project it onto a 3D point cloud.
- The input I is fed into the perception network, which outputs a spatial feature representation µ that is then fed into the grasping and throwing modules.

Grasping Module: Learning Parallel-jaw Grasps

- Motivation

Model

Constraints

s Traini

Cond

- Grasping primitive:
 - takes as input parameters $\phi_g = (x, \theta)$ and executes a top-down parallel-jaw grasp.
- Grasping network:
 - Accepts the visual feature representation μ as input, and outputs a probability map Q_g.
 - ► Each value of a pixel qi ∈ Q_g represents the predicted probability of grasping success.

Berk Güngör - TossingBot

Throwing Module: Learning Throwing Velocities

Notivation I

Model

Constraint

Trainir

Evaluation

- Accepts the visual feature representation μ as input, and outputs an image Q_t with the same size and resolution as that of the input heightmap I.
- Goal : to predict the release position and velocity of a predefined throwing primitive.
 - Constrain the direction of v to be angled 45 upwards in the direction of p.

Throwing Module: Learning Throwing Velocities

- = 20000 = : 000 :
- Motivation
- Introduction

Model

Constraints

ıts Tr

Evalua

- It is responsible for;
- Planning the release position (r)
 - r is constrained with 2 assumptions.
- Planning the release velocity $(v_{x,y})$
 - Given a target p and r, there could be multiple solutions of $v_{x,y}$.

- Fixed throwing height : r_z
- Fixed release distance from robot base : c_d
- Fixed velocity direction angled 45 degree upwards.

Only one unknown variable remained.

		Constraints		

Successful Grasping with Residual Physics

Motivation

Constraints

Training

on Co

- Green dot indicates theCenter of Mass.
- Darker regions indicate more grasps.
- Leveraging accuracy of throws as supervision enables the grasping policy to learn a more restricted but stable set of grasps.

Learning Residual Physics for Throwing

Motivation

duction

; Mode

Constraints

Training

Evaluation

- Physics-based controller
 - ▶ It assumes that the effects of aerodynamic drag are negligible.
 - It assumes that the gripper release velocity v directly determines the velocity of the projectile.
- Residual Physics-based controller
 - ► throwing network that predicts a residual on top of the estimated release velocity $||v^x,y||$ for each possible grasp. $||v_{x,y}|| = ||\hat{v}_{x,y}|| + \delta$

Training

otivation

- Trained via self-supervision (based on trial and error)
 - Success after grasping
 - Success after throwing
- Trained jointly with grasping and throwing together.
- Over some time it learns to grasp objects and simultaneously improves its throwing ability.

After 10 Training Steps

Throwing Accuracy: 0% Grasping Reliability: 5%

After 10,000 Training Steps (14 hrs)

Throwing Accuracy:85%Grasping Reliability:87%

Evaluation

Motivation

- Goals of experiment
 - to evaluate the overall accuracy and efficiency of our pick-and-throw system on arbitrary objects.
 - to test its generalization to new objects and target locations unseen during training.
 - to compare our proposed method based on Residual Physics to other baseline alternatives.
- Evaluation metrics
 - grasping success
 - throwing success

Evaluation

Simulation environment in PyBullet via trial and error for 15,000 steps.

 TABLE I

 THROWING PERFORMANCE IN SIMULATION (MEAN %)

Method	Balls	Cubes	Rods	Hammers	Seen	Unseen
Regression	70.9	48.8	37.5	32.8	41.8	28.4
Regression-PoP	96.1	73.5	52.8	47.8	56.2	35.0
Physics-only	98.6	83.5	77.2	70.4	82.6	50.0
Residual-physics	99.6	86.3	86.4	81.2	88.6	66.5

TABLE II							
GRASPING PERFORMANCE IN SIMULATION	(MEAN %)						

Method	Balls	Cubes	Rods	Hammers	Seen	Unseen
Regression	99.4	99.2	89.0	87.8	95.6	69.4
Regression-PoP	99.2	98.0	89.8	87.0	96.4	70.6
Physics-only	99.4	99.2	87.6	85.2	96.6	64.0
Residual-physics	98.8	99.2	89.2	84.8	96.0	74.6

- Key is the use of Residual Physics, a hybrid controller that leverages deep learning to predict residuals on top of control parameters estimated with physics.
- In both simulation and real settings show that the system learns to improve grasps for throwing through joint training from trial and error.
- Model Performs significantly better with Residual Physics than comparable alternatives.
- There are constraints.