

Clothes and Fabric Classification **Progress Report**

Niklas Fiedler

University of Hamburg University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

January 18, 2022

Recent Work

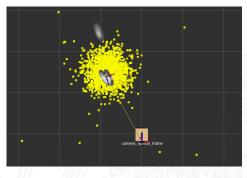
Current Work

Clothes Classification

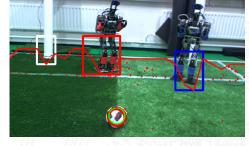
Fabric Classification

Future Plans

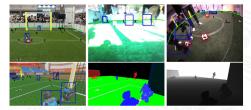
Recent Work Current Work Future Plans


- Imagetagger: An Open Source Online Platform for Collaborative Image Labeling
- Position Estimation on Image-Based Heat Map Input using Particle Filters in Cartesian Space
- An Open Source Vision
 Pipeline Approach for
 RoboCup Humanoid Soccer
- ► TORSO-21 Dataset: Typical Objects in RoboCup Soccer 2021

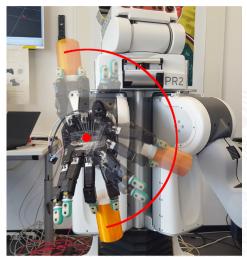
Fiedler, N., Bestmann, M., & Hendrich, N. (2018). Imagetagger: An open source online platform for collaborative image labeling. In Robot World Cup (pp. 162-169). Springer.


 Imagetagger: An Open Source Online Platform for Collaborative Image Labeling

- Position Estimation on Image-Based Heat Map Input using Particle Filters in Cartesian Space
- An Open Source Vision
 Pipeline Approach for
 RoboCup Humanoid Soccer
- ► TORSO-21 Dataset: Typical Objects in RoboCup Soccer 2021


Fiedler, N., Bestmann, M., & Zhang, J. (2019). Position estimation on image-based heat map input using particle filters in cartesian space. In International Conference on Industrial Cyber Physical Systems (ICPS) (pp. 269-274). IEFF.

- Imagetagger: An Open Source Online Platform for Collaborative Image Labeling
- Position Estimation on Image-Based Heat Map Input using Particle Filters in Cartesian Space
- An Open Source Vision
 Pipeline Approach for
 RoboCup Humanoid Soccer
- ► TORSO-21 Dataset: Typical Objects in RoboCup Soccer 2021


Fiedler, N., Brandt, H., Gutsche, J., Vahl, F., Hagge, J., & Bestmann, M. (2019). An open source vision pipeline approach for robocup humanoid soccer. In Robot World Cup (pp. 376-386). Springer

- Imagetagger: An Open Source Online Platform for Collaborative Image Labeling
- Position Estimation on Image-Based Heat Map Input using Particle Filters in Cartesian Space
- An Open Source Vision
 Pipeline Approach for
 RoboCup Humanoid Soccer
- ► TORSO-21 Dataset: Typical Objects in RoboCup Soccer 2021

Bestmann, M., Engelke, T., Fiedler, N., Güldenstein, J., Gutsche, J., Hagge, J. & Vahl, F. (2021). TORSO-21 Dataset: Typical Objects in RoboCup Soccer 2021. RoboCup 2021 (pp. 339-346). Springer.

- Multimodal Object Analysis with Auditory and Tactile Sensing Using Recurrent Neural Networks
- ➤ A Low-Cost Modular System of Customizable, Versatile, and Flexible Tactile Sensor Arrays

Jonetzko, Y., Fiedler, N., Eppe, M., & Zhang, J. (2020). Multimodal Object Analysis with Auditory and Tactile Sensing Using Recurrent Neural Networks. In International Conference on Cognitive Systems and Signal Processing (pp. 253-265). Springer.

- Multimodal Object Analysis with Auditory and Tactile Sensing Using Recurrent Neural Networks
- ► A Low-Cost Modular System of Customizable, Versatile, and Flexible Tactile Sensor Arrays

Fiedler, N., Ruppel, P., Jonetzko, Y., Hendrich, N., & Zhang, J. (2021) A Low-Cost Modular System of Customizable, Versatile, and Flexible Tactile Sensor Arrays. In International Conference on Intelligent Robots and Systems (IROS) (pp. 1771-1777). IEEE.

Recent Work

Current Work

Clothes Classification Fabric Classification

Future Plans

Clothes and Fabric Classification

Clothes and Fabric Classification

Clothes and Fabric Classification

Image sources: https://www.otto.de

Image sources: https://www.otto.de, https://www.almostzerowaste.com

Clothes and Fabric Classification

Image sources: https://www.otto.de, https://www.almostzerowaste.com

Clothes and Fabric Classification

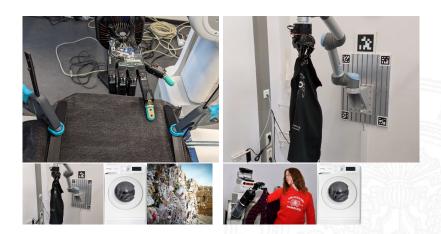


Image sources: https://www.otto.de, https://www.almostzerowaste.com

Clothes and Fabric Classification

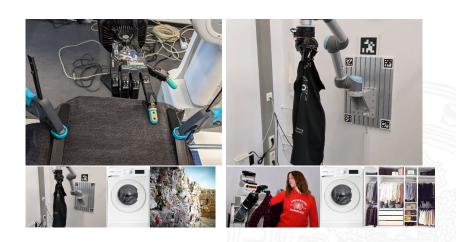


Image sources: https://www.otto.de, https://www.almostzerowaste.com, https://www.instyle.de

Clothes and Fabric Classification

Current Work

CloPeMa - Clothes Perception and Manipulation

http://clopemaweb.felk.cvut.cz/

https://www.youtube.com/watch?v=ToAV_5mgN2Q

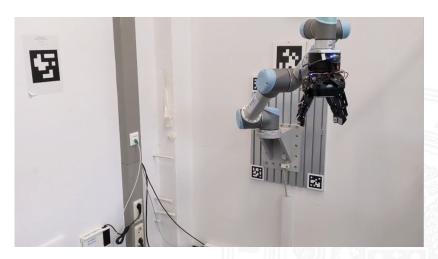
Recent Work

Current Work

Clothes Classification

Fabric Classification

Future Plans



Deep Learning Based Classification of Clothes using Point Clouds

- 7 classes of clothes
- Point cloud input
- ► Non-rigid (highly flexible) objects
- PointNet as classification architecture
- ► Experiments analyzing strengths and weaknesses of PointNet

- ► PointNet is usable as a live-classifier for non-rigid objects such as clothes
- ▶ 74.4% classification accuracy
- ► An input of 1024 points works well
- ► The inclusion of point normals in the input data shows significant improvements in classification accuracy but lead to overfitting
- The neural network focuses on the silhouette of the point clouds
- Using a method which utilizes local features could yield significant improvements

► Automated data collection

Niklas Fiedler 13/22

- Automated data collection
- ► Chose samples and classes for new dataset
- ► New dataset recording in progress
- ► Training pipeline cleanup
- ► DGCNN integration (not optimized)

- ► Further data collection
- Optimization of hyperparameters for both architectures
- Analysis of strengths of the architectures
- ▶ Perform similar experiments as in master thesis
 - With optimizations
 - Two architectures
 - More diverse dataset
- Comparison to image based approach

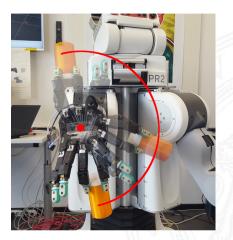
Recent Work

Current Work

Clothes Classification

Fabric Classification

Future Plans



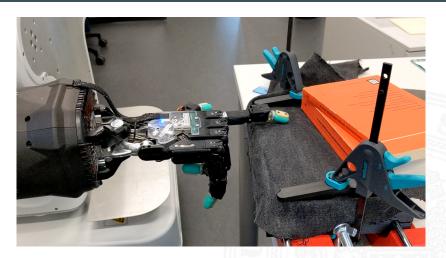
Force Data

Longhini, A., Welle, M. C., Mitsioni, I., & Kragic, D. (2021). Textile Taxonomy and Classification Using Pulling and Twisting. In International Conference on Intelligent Robots and Systems (IROS). IEEE.

Tactile Data

Tactile Data

Tactile Data



Force Data

Clothes and Fabric Classification

Current Work - Fabric Classification

► Automated data collection

- Automated data collection
- ▶ 3 fabric types
- ► Tactile data based classification performance: 82% accuracy
- ► Chose samples and classes for new dataset

- ► Multimodal network
- ▶ Classification based on both tactile and force measurements
- ▶ Integration of DIGIT sensors and measurements
- ► Investigation of multimodal approaches

Recent Work

Current Work

Future Plans

Future Plans Clothes and Fabric Classification

- ▶ Multimodal clothes classification using DIGIT sensor
- ► Segment parts or features of clothes
- ▶ Recurrent Deep Neural Network processing of point clouds
- ► Fabric manipulation

Please contact me niklas.fiedler@uni-hamburg.de